33,506 research outputs found

    Thermodynamic study of heavy metals behavior during municipal waste incineration

    Get PDF
    The incineration of municipal solid waste (MSW) contributes significantly to the presence of heavy metals in urban area aerosols. It is thus important to ascertain the quantities and chemical forms of the heavy metals (HM) that are emitted from the incineration plant stacks. The behaviour of HM, which depends strongly on the thermal and chemical environments, was investigated herein with a modelling approach, consisting of several parts. First, a refuse bed combustion model was developed for simulating on-grate MSW incineration. It describes most of the physico-chemical and thermal phenomena occurring during waste combustion. Second, results from the bed model were taken as boundary conditions to perform 3D simulations of the post-combustion zone and of the boiler. The case studied was of the Strasbourg incineration plant. Finally, the local thermal conditions and the local elementary compositions of gas and solid phases obtained from these simulations were used to carry out thermodynamic calculations of the speciation of HM at each point in the incinerator. The results for four metals (Cd, Zn, Pb, Cr) are presented, discussed and compared to available data. Predicted species are in agreement with observations for volatile metals, except lead, whose volatilization seems overestimated

    Modeling on-grate MSW incineration with experimental validation in a batch incinerator

    Get PDF
    This Article presents a 2-D steady-state model developed for simulating on-grate municipal solid waste incineration, termed GARBED-ss. Gas-solid reactions, gas flow through the porous waste particle bed, conductive, convective, and radiative heat transfer, drying and pyrolysis of the feed, the emission of volatile species, combustion of the pyrolysis gases, the formation and oxidation of char and its gasification by water vapor and carbon dioxide, and the consequent reduction of the bed volume are described in the bed model. The kinetics of the pyrolysis of cellulosic and noncellulosic materials were experimentally derived from experimental measurements. The simulation results provide a deep insight into the various phenomena involved in incineration, for example, the complete consumption of oxygen in a large zone of the bed and a consequent char-gasification zone. The model was successfully validated against experimental measurements in a laboratory batch reactor, using an adapted sister version in a transient regime. © 2010 American Chemical Society

    Thermo-economic assessment of a olive pomace gasifier for cogeneration applications

    Get PDF
    A thermo-economic analysis of a combined heat and power (CHP) plant fed by syngas produced through the gasification of dry olive pomace is presented. The plant is composed by a 800 kWtdowndraft gasifier, a gas clean-up system, a 200 kWemicroturbine (MGT) and a heat recovery system to cogenerate hot water. Surplus heat is used to dry olive pomace from 50% to 17% wb moisture content. The plant is modeled in ASPEN Plus. Real data from experimental tests are used to calibrate the gasifier model, while the technical specification and performance of the CHP plant are collected from commercial plants in operation and data from manufacturers. Mass and energy balances are reported throughout the paper. The thermodynamic simulation of the biomass gasifier coupled to the MGT, the thermal and electrical conversion efficiency and temperature of cogenerated heat available are also presented. A thermo-economic assessment is then proposed, to investigate the economic profitability of this small scale CHP plant in the Italian energy policy scenario and considering the subsidies available for renewable electricity in the form of feed-in tariffs. For this purpose, the case study of base load CHP plant operation and heat supplied to different typologies of energy end user is assumed. The results allow quantifying the most influencing economic and technical factors that affect the performance and profitability of such investment and the bottlenecks that should be faced to facilitate a broader implementation of such CHP schemes for on site generation

    Knowledge Discovery in the SCADA Databases Used for the Municipal Power Supply System

    Full text link
    This scientific paper delves into the problems related to the develop-ment of intellectual data analysis system that could support decision making to manage municipal power supply services. The management problems of mu-nicipal power supply system have been specified taking into consideration modern tendencies shown by new technologies that allow for an increase in the energy efficiency. The analysis findings of the system problems related to the integrated computer-aided control of the power supply for the city have been given. The consideration was given to the hierarchy-level management decom-position model. The objective task targeted at an increase in the energy effi-ciency to minimize expenditures and energy losses during the generation and transportation of energy carriers to the Consumer, the optimization of power consumption at the prescribed level of the reliability of pipelines and networks and the satisfaction of Consumers has been defined. To optimize the support of the decision making a new approach to the monitoring of engineering systems and technological processes related to the energy consumption and transporta-tion using the technologies of geospatial analysis and Knowledge Discovery in databases (KDD) has been proposed. The data acquisition for analytical prob-lems is realized in the wireless heterogeneous medium, which includes soft-touch VPN segments of ZigBee technology realizing the 6LoWPAN standard over the IEEE 802.15.4 standard and also the segments of the networks of cellu-lar communications. JBoss Application Server is used as a server-based plat-form for the operation of the tools used for the retrieval of data collected from sensor nodes, PLC and energy consumption record devices. The KDD tools are developed using Java Enterprise Edition platform and Spring and ORM Hiber-nate technologies

    Electricity and combined heat and power from municipal solid waste : theoretically optimal investment decision time and emissions trading implications

    Get PDF
    Waste management has become a great social concern for modern societies. Landfill emissions have been identified among the major contributors of global warming and climate changes with significant impact in national economies. The energy industry constitutes an additional greenhouse gas emitter, while at the same time it is characterized by significant costs and uncertain fuel prices. The above implications have triggered different policies and measures worldwide to address the management of municipal solid wastes on the one hand and the impacts from energy production on the other. Emerging methods of energy recovery from waste may address both concerns simultaneously. In this work a comparative study of co-generation investments based on municipal solid waste is presented, focusing on the evolution of their economical performance over time. A real-options algorithm has been adopted investigating different options of energy recovery from waste: incineration, gasification and landfill biogas exploitation. The financial contributors are identified and the impact of greenhouse gas trading is analysed in terms of financial yields, considering landfilling as the baseline scenario. The results indicate an advantage of combined heat and power over solely electricity production. Gasification, has failed in some European installations. Incineration on the other hand, proves to be more attractive than the competing alternatives, mainly due to its higher power production efficiency, lower investment costs and lower emission rates. Although these characteristics may not drastically change over time, either immediate or irreversible investment decisions might be reconsidered under the current selling prices of heat, power and CO2 allowances
    • …
    corecore