304 research outputs found

    Panel on future challenges in modeling methodology

    Get PDF
    This panel paper presents the views of six researchers and practitioners of simulation modeling. Collectively we attempt to address a range of key future challenges to modeling methodology. It is hoped that the views of this paper, and the presentations made by the panelists at the 2004 Winter Simulation Conference will raise awareness and stimulate further discussion on the future of modeling methodology in areas such as modeling problems in business applications, human factors and geographically dispersed networks; rapid model development and maintenance; legacy modeling approaches; markup languages; virtual interactive process design and simulation; standards; and Grid computing

    Design and Development of an Architecture for Demonstrating the Interplay of Emerging SISO Standards

    Get PDF
    Simulation Interoperability Standards Organization (SISO) SIW Conference PaperThe Simulation Interoperability Standards Organization (SISO) focuses on facilitating simulation interoperability across government and non-government applications worldwide. A number of standards are emerging that will individually have great impact on the development and operation of simulation systems, as well as interoperation across simulation systems and command and control systems. Taken together, however, the emerging standards represent a set of capabilities and technologies which can revolutionize the simulation industry, radically improving the way we develop and deliver interoperable systems

    An Extended Interoperability Framework for Joint Composability

    Get PDF
    Interoperation of systems is defined by the aspects of integratability, interoperability, and composability. It is therefore needed, to address all levels of interoperation - from conceptual models via implemented systems to the supported infrastructure - accordingly in an interoperation framework. Several candidates are available and provide valuable part solution. This paper evaluates the Base Object Models (BOMs), Discrete Event Simulation Specifications (DEVS), Unified Language Model (UML) artifacts as used within the Test and Training Enabling Architecture (TENA), the Object-Process Methodology (OPM), and Conceptual Graphs (CG) regarding their contribution. Using the Levels of Conceptual Interoperability Model (LCIM), an extended interoperability framework based on the contributions of BOM, DEVS, UML/TENA, OPM, and CG will be proposed and gaps in support of joint composability are indentified

    E-business and circular supply chains : increased business opportunities by IT-based customer oriented return-flow management

    Get PDF
    This paper deals with the application of IT in circular supply chains (CSCs). We consider information on the installed base critical, and present an illustrative example. Next we discuss a framework of different kinds of value contained in a return, and IT-applications useful in supporting its recovery or neutralisation in case of negative externalities. Also we show which kind of CSC is needed for which kind of return. We illustrate our work by three real life case studies.reverse logistics;supply chain management;electronic commerce;product life cycle

    Semantic web service architecture for simulation model reuse

    Get PDF
    COTS simulation packages (CSPs) have proved popular in an industrial setting with a number of software vendors. In contrast, options for re-using existing models seem more limited. Re-use of simulation component models by collaborating organizations is restricted by the same semantic issues however that restrict the inter-organization use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architecture provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontology to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of ontology, connector software and web service discovery architecture in order to understand how such ontology are created, maintained and subsequently used for simulation model reuse. The ontology is extracted from health service simulation - comprising hospitals and the National Blood Service. The ontology engineering framework and discovery architecture provide a novel approach to inter- organization simulation, uncovering domain semantics and adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community

    An Open Architecture Framework for Electronic Warfare Based Approach to HLA Federate Development

    Get PDF
    A variety of electronic warfare models are developed in the Electronic Warfare Research Center. An Open Architecture Framework for Electronic Warfare (OAFEw) has been developed for reusability of various object models participating in the electronic warfare simulation and for extensibility of the electronic warfare simulator. OAFEw is a kind of component-based software (SW) lifecycle management support framework. This OAFEw is defined by six components and ten rules. The purpose of this study is to construct a Distributed Simulation Interface Model, according to the rules of OAFEw, and create Use Case Model of OAFEw Reference Conceptual Model version 1.0. This is embodied in the OAFEw-FOM (Federate Object Model) for High-Level Architecture (HLA) based distributed simulation. Therefore, we design and implement EW real-time distributed simulation that can work with a model in C++ and MATLAB API (Application Programming Interface). In addition, OAFEw-FOM, electronic component model, and scenario of the electronic warfare domain were designed through simple scenarios for verification, and real-time distributed simulation between C++ and MATLAB was performed through OAFEw-Distributed Simulation Interface

    Integrated product relationships management : a model to enable concurrent product design and assembly sequence planning

    Get PDF
    The paper describes a novel approach to product relationships management in the context of concurrent engineering and product lifecycle management (PLM). Current industrial practices in product data management and manufacturing process management systems require better efficiency, flexibility, and sensitivity in managing product information at various levels of abstraction throughout its lifecycle. The aim of the proposed work is to manage vital yet complex and inherent product relationship information to enable concurrent product design and assembly sequence planning. Indeed, the definition of the product with its assembly sequence requires the management and the understanding of the numerous product relationships, ensuring consistency between the product and its components. This main objective stresses the relational design paradigm by focusing on product relationships along its lifecycle. This paper gives the detailed description of the background and models which highlight the need for a more efficient PLM approach. The proposed theoretical approach is then described in detail. A separate paper will focus on the implementation of the proposed approach in a PLM-based application, and an in-depth case study to evaluate the implementation of the novel approach will also be given

    Comparison of shipbuilding and construction industries from the product structure standpoint

    Full text link
    Copyright © 2018 Inderscience Enterprises Ltd. The use of building information modelling (BIM) in construction compares to the use of product lifecycle management (PLM) in manufacturing. Previous research has shown that it is possible to improve BIM with the features and the best practices from the PLM approach. This article provides a comparison from the standpoint of the bill of materials (BOM) and product structures. It compares the product beginning of life in both construction and shipbuilding industries. The research then tries to understand the use, form and evolution of product structures and BOM concepts in shipbuilding with the aim of identifying equivalent notions in construction. Research findings demonstrate that similar concepts for structuring information exist in construction; however, the relationship between them is unclear. Further research is therefore required to detail the links identified by the authors and develop an equivalent central structuring backbone as found in PLM platforms

    Models, Composability, and Validity

    Get PDF
    Composability is the capability to select and assemble simulation components in various combinations into simulation systems to satisfy specific user requirements. The defining characteristic of composability is the ability to combine and recombine components into different simulation systems for different purposes. The ability to compose simulation systems from repositories of reusable components has been a highly sought after goal among modeling and simulation developers. The expected benefits of robust, general composability include reduced simulation development cost and time, increased validity and reliability of simulation results, and increased involvement of simulation users in the process. Consequently, composability is an active research area, with both software engineering and theoretical approaches being developed. Composability exists in two forms, syntactic and semantic (also known as engineering and modeling). Syntactic composability is the implementation of components so that they can be connected. Semantic composability answers the question of whether the models implemented in the composition can be meaningfully composed
    corecore