7 research outputs found

    Model driven simulation of elastic OCCI cloud resources

    Get PDF
    International audienceDeploying a cloud configuration in a real cloud platform is mostly cost-and time-consuming, as large number of cloud resources have to be rent for the time needed to run the configuration. Thereafter, cloud simulation tools are used as a cheap alternative to test Cloud configuration. However, most of existing cloud simulation tools require extensive technical skills and does not support simulation of any kind of cloud resources. In this context, using a model-driven approach can be helpful as it allows developers to efficiently describe their needs at a high level of abstraction. To do, we propose, in this article, a Model-Driven Engineering (MDE) approach based on the OCCI (Open Cloud Computing Interface) standard metamodel and CloudSim toolkit. We firstly extend OCCI metamodel for supporting simulation of any kind of cloud resources. Afterward, to illustrate the extensibility of our approach, we enrich the proposed metamodel by new simulation capabilities. As proof of concept, we study the elasticity and pricing strategies of Amazon Web Services (AWS). This article benefits from OCCIware Studio to design an OCCI simulation extension and to provide a simulation designer for designing cloud configurations to be simulated. We detail the approach process from defining an OCCI simulation extension until the generation and the simulation of the OCCI cloud configurations. Finally, we validate the proposed approach by providing a realistic experimentation to study its usability, the resources coverage rate and the cost. The results is compared with the ones computed from AWS

    A Model-Driven Tool Chain for OCCI

    Get PDF
    International audienceOpen Cloud Computing Interface (OCCI) is the only open standard for managing any kinds of cloud resources, e.g., Infrastructure as a Service, Platform as a Service, and Software as a Service. However, no model-driven tooling exists to assist OCCI users in designing, editing, validating, generating, and managing OCCI artifacts (i.e., extensions that represent specific application domains and configurations that define the running systems). In this paper, we propose the first model-driven tool chain for OCCI called OCCIware Studio. This tool chain is based on a metamodel defining the static semantics for the OCCI standard in Ecore and OCL. OCCIware Studio provides OCCI users facilities for designing, editing, validating, generating, and managing OCCI artifacts. We detail the tooled process to define an OCCI extension. In addition, we show how the cloud user can leverage the generated tooling for this extension to create his own OCCI configurations and manage them in the cloud.We illustrate our paper with the OCCI infrastructure extension proposed to define OCCI-compliant compute, network, and storageresources

    Mobile Cloud Robotics as a Service with OCCIware

    Get PDF
    Best Paper AwardInternational audienceWe have recently witnessed the emerging of cloud computing on one hand and robotics platforms on the other hand. Naturally, these two visions have been merging to give birth to the Cloud Robotics paradigm in order to offer even more remote services. But such a vision is still in its infancy. Architectures and platforms are still to be defined to efficiently program robots so they can provide different services, in a standardized way masking their heterogeneity. This paper introduces Open Mobile Cloud Robotics Interface (OMCRI), a Robot-as-a-Service vision based platform, which offers a unified easy access to remote heterogeneous mobile robots. OMCRI encompasses an extension of the Open Cloud Computing Interface (OCCI) standard and a gateway hosting mobile robot resources. We then provide an implementation of OMCRI based on the open source model-driven Eclipse-based OCCIware tool chain and illustrates its use for three off-the-shelf mobile robots: Lego Mindstorm NXT, Turtlebot, and Parrot AR.Drone

    Specifying Semantic Interoperability between Heterogeneous Cloud Resources with the FCLOUDS Formal Language

    Get PDF
    International audienceWith the advent of cloud computing, different cloud providers with heterogeneous services and Application Programming Interfaces (APIs) have emerged. Hence, building an interop-erable multi-cloud system becomes a complex task. Our idea is to design FCLOUDS framework to achieve semantic interoperability in multi-clouds, i.e., to identify the common concepts between cloud APIs and to reason over them. In this paper, we propose to take advantage of the Open Cloud Computing Interface (OCCI) standard and the Alloy formal specification language to define the FCLOUDS language, which is a formal language for specifying heterogeneous cloud APIs. To do so, we formalize OCCI concepts and operational semantics, then we identify and validate five properties (consistency, sequentiality, reversibility, idempotence and safety) that denote their characteristics. To demonstrate the effectiveness of our cloud formal language, we present thirteen case studies where we formally specify infrastructure, platform, Internet of Things (IoT) and transverse cloud concerns. Thanks to the Alloy analyzer, we verify that these heterogeneous APIs uphold the properties of FCLOUDS and also validate their own specific properties. Then, thanks to formal transformation rules and equivalence properties, we draw a precise alignment between our case studies, which promotes semantic interoperability in a multi-cloud system

    Deployment and Operation of Complex Software in Heterogeneous Execution Environments

    Get PDF
    This open access book provides an overview of the work developed within the SODALITE project, which aims at facilitating the deployment and operation of distributed software on top of heterogeneous infrastructures, including cloud, HPC and edge resources. The experts participating in the project describe how SODALITE works and how it can be exploited by end users. While multiple languages and tools are available in the literature to support DevOps teams in the automation of deployment and operation steps, still these activities require specific know-how and skills that cannot be found in average teams. The SODALITE framework tackles this problem by offering modelling and smart editing features to allow those we call Application Ops Experts to work without knowing low level details about the adopted, potentially heterogeneous, infrastructures. The framework offers also mechanisms to verify the quality of the defined models, generate the corresponding executable infrastructural code, automatically wrap application components within proper execution containers, orchestrate all activities concerned with deployment and operation of all system components, and support on-the-fly self-adaptation and refactoring

    Softwarization of Large-Scale IoT-based Disasters Management Systems

    Get PDF
    The Internet of Things (IoT) enables objects to interact and cooperate with each other for reaching common objectives. It is very useful in large-scale disaster management systems where humans are likely to fail when they attempt to perform search and rescue operations in high-risk sites. IoT can indeed play a critical role in all phases of large-scale disasters (i.e. preparedness, relief, and recovery). Network softwarization aims at designing, architecting, deploying, and managing network components primarily based on software programmability properties. It relies on key technologies, such as cloud computing, Network Functions Virtualization (NFV), and Software Defined Networking (SDN). The key benefits are agility and cost efficiency. This thesis proposes softwarization approaches to tackle the key challenges related to large-scale IoT based disaster management systems. A first challenge faced by large-scale IoT disaster management systems is the dynamic formation of an optimal coalition of IoT devices for the tasks at hand. Meeting this challenge is critical for cost efficiency. A second challenge is an interoperability. IoT environments remain highly heterogeneous. However, the IoT devices need to interact. Yet another challenge is Quality of Service (QoS). Disaster management applications are known to be very QoS sensitive, especially when it comes to delay. To tackle the first challenge, we propose a cloud-based architecture that enables the formation of efficient coalitions of IoT devices for search and rescue tasks. The proposed architecture enables the publication and discovery of IoT devices belonging to different cloud providers. It also comes with a coalition formation algorithm. For the second challenge, we propose an NFV and SDN based - architecture for on-the-fly IoT gateway provisioning. The gateway functions are provisioned as Virtual Network Functions (VNFs) that are chained on-the-fly in the IoT domain using SDN. When it comes to the third challenge, we rely on fog computing to meet the QoS and propose algorithms that provision IoT applications components in hybrid NFV based - cloud/fogs. Both stationary and mobile fog nodes are considered. In the case of mobile fog nodes, a Tabu Search-based heuristic is proposed. It finds a near-optimal solution and we numerically show that it is faster than the Integer Linear Programming (ILP) solution by several orders of magnitude

    Towards a formal reference computational model for cloud configuration management

    Get PDF
    The multiplication of models, languages, APIs and tools for cloud and network configuration management raises heterogeneity issues that can be tackled by introducing a reference model. A reference model provides a common basis for interpretation for various models and languages, and for bridging different APIs and tools.This report formally specifies, in the Alloy specification language, a reference model for cloud configuration management, we call the Cloudnet Computational Model. We show how to formally interpret several configuration languages in it, including the TOSCA configuration language, the OpenStack Heat Orchestration Template, the Docker Compose configuration language, and the Aeolus cloud deployment model. We show in particular how the formal operational semantics of our Cloudnet computation modelallows us to extend the TOSCA standard with Aeolus concepts for deployment lifecycle,and how the Alloy formalization allowed us to discover several classes of errors in the OpenStack HOT specification
    corecore