6,728 research outputs found

    Hybrid approaches based on computational intelligence and semantic web for distributed situation and context awareness

    Get PDF
    2011 - 2012The research work focuses on Situation Awareness and Context Awareness topics. Specifically, Situation Awareness involves being aware of what is happening in the vicinity to understand how information, events, and one’s own actions will impact goals and objectives, both immediately and in the near future. Thus, Situation Awareness is especially important in application domains where the information flow can be quite high and poor decisions making may lead to serious consequences. On the other hand Context Awareness is considered a process to support user applications to adapt interfaces, tailor the set of application-relevant data, increase the precision of information retrieval, discover services, make the user interaction implicit, or build smart environments. Despite being slightly different, Situation and Context Awareness involve common problems such as: the lack of a support for the acquisition and aggregation of dynamic environmental information from the field (i.e. sensors, cameras, etc.); the lack of formal approaches to knowledge representation (i.e. contexts, concepts, relations, situations, etc.) and processing (reasoning, classification, retrieval, discovery, etc.); the lack of automated and distributed systems, with considerable computing power, to support the reasoning on a huge quantity of knowledge, extracted by sensor data. So, the thesis researches new approaches for distributed Context and Situation Awareness and proposes to apply them in order to achieve some related research objectives such as knowledge representation, semantic reasoning, pattern recognition and information retrieval. The research work starts from the study and analysis of state of art in terms of techniques, technologies, tools and systems to support Context/Situation Awareness. The main aim is to develop a new contribution in this field by integrating techniques deriving from the fields of Semantic Web, Soft Computing and Computational Intelligence. From an architectural point of view, several frameworks are going to be defined according to the multi-agent paradigm. Furthermore, some preliminary experimental results have been obtained in some application domains such as Airport Security, Traffic Management, Smart Grids and Healthcare. Finally, future challenges is going to the following directions: Semantic Modeling of Fuzzy Control, Temporal Issues, Automatically Ontology Elicitation, Extension to other Application Domains and More Experiments. [edited by author]XI n.s

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    Information Systems and Healthcare XXXIV: Clinical Knowledge Management Systems—Literature Review and Research Issues for Information Systems

    Get PDF
    Knowledge Management (KM) has emerged as a possible solution to many of the challenges facing U.S. and international healthcare systems. These challenges include concerns regarding the safety and quality of patient care, critical inefficiency, disparate technologies and information standards, rapidly rising costs and clinical information overload. In this paper, we focus on clinical knowledge management systems (CKMS) research. The objectives of the paper are to evaluate the current state of knowledge management systems diffusion in the clinical setting, assess the present status and focus of CKMS research efforts, and identify research gaps and opportunities for future work across the medical informatics and information systems disciplines. The study analyzes the literature along two dimensions: (1) the knowledge management processes of creation, capture, transfer, and application, and (2) the clinical processes of diagnosis, treatment, monitoring and prognosis. The study reveals that the vast majority of CKMS research has been conducted by the medical and health informatics communities. Information systems (IS) researchers have played a limited role in past CKMS research. Overall, the results indicate that there is considerable potential for IS researchers to contribute their expertise to the improvement of clinical process through technology-based KM approaches

    An expandable approach for design and personalization of digital, just-in-time adaptive interventions

    Get PDF
    Objective: We aim to deliver a framework with 2 main objectives: 1) facilitating the design of theory-driven, adaptive, digital interventions addressing chronic illnesses or health problems and 2) producing personalized intervention delivery strategies to support self-management by optimizing various intervention components tailored to people's individual needs, momentary contexts, and psychosocial variables

    Automated Injection of Curated Knowledge Into Real-Time Clinical Systems: CDS Architecture for the 21st Century

    Get PDF
    abstract: Clinical Decision Support (CDS) is primarily associated with alerts, reminders, order entry, rule-based invocation, diagnostic aids, and on-demand information retrieval. While valuable, these foci have been in production use for decades, and do not provide a broader, interoperable means of plugging structured clinical knowledge into live electronic health record (EHR) ecosystems for purposes of orchestrating the user experiences of patients and clinicians. To date, the gap between knowledge representation and user-facing EHR integration has been considered an “implementation concern” requiring unscalable manual human efforts and governance coordination. Drafting a questionnaire engineered to meet the specifications of the HL7 CDS Knowledge Artifact specification, for example, carries no reasonable expectation that it may be imported and deployed into a live system without significant burdens. Dramatic reduction of the time and effort gap in the research and application cycle could be revolutionary. Doing so, however, requires both a floor-to-ceiling precoordination of functional boundaries in the knowledge management lifecycle, as well as formalization of the human processes by which this occurs. This research introduces ARTAKA: Architecture for Real-Time Application of Knowledge Artifacts, as a concrete floor-to-ceiling technological blueprint for both provider heath IT (HIT) and vendor organizations to incrementally introduce value into existing systems dynamically. This is made possible by service-ization of curated knowledge artifacts, then injected into a highly scalable backend infrastructure by automated orchestration through public marketplaces. Supplementary examples of client app integration are also provided. Compilation of knowledge into platform-specific form has been left flexible, in so far as implementations comply with ARTAKA’s Context Event Service (CES) communication and Health Services Platform (HSP) Marketplace service packaging standards. Towards the goal of interoperable human processes, ARTAKA’s treatment of knowledge artifacts as a specialized form of software allows knowledge engineers to operate as a type of software engineering practice. Thus, nearly a century of software development processes, tools, policies, and lessons offer immediate benefit: in some cases, with remarkable parity. Analyses of experimentation is provided with guidelines in how choice aspects of software development life cycles (SDLCs) apply to knowledge artifact development in an ARTAKA environment. Portions of this culminating document have been further initiated with Standards Developing Organizations (SDOs) intended to ultimately produce normative standards, as have active relationships with other bodies.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201
    corecore