439,756 research outputs found

    Formation of wave-front pattern accompanied by current-driven electrostatic ion-cyclotron instabilities

    Get PDF
    Formation of a wave-front pattern accompanied by an electrostatic ion-cyclotron instability driven by electrons drifting along a magnetic field is investigated by two-and-half dimensional particle simulations. A clear spatial wave-front pattern appears as the ion cyclotron wave grows due to the instability. When the electron stream is uniform in the system, an obliquely intersected stripe wave-front pattern is formed. When the stream has a bell-shaped pattern across the magnetic field, a V-shaped stripe wave-front pattern appears. The wave fronts have small angles with the magnetic field lines and propagate from the high-stream region to the low-stream region

    Minimum-complexity helicopter simulation math model

    Get PDF
    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed

    Capturing Topology in Graph Pattern Matching

    Get PDF
    Graph pattern matching is often defined in terms of subgraph isomorphism, an NP-complete problem. To lower its complexity, various extensions of graph simulation have been considered instead. These extensions allow pattern matching to be conducted in cubic-time. However, they fall short of capturing the topology of data graphs, i.e., graphs may have a structure drastically different from pattern graphs they match, and the matches found are often too large to understand and analyze. To rectify these problems, this paper proposes a notion of strong simulation, a revision of graph simulation, for graph pattern matching. (1) We identify a set of criteria for preserving the topology of graphs matched. We show that strong simulation preserves the topology of data graphs and finds a bounded number of matches. (2) We show that strong simulation retains the same complexity as earlier extensions of simulation, by providing a cubic-time algorithm for computing strong simulation. (3) We present the locality property of strong simulation, which allows us to effectively conduct pattern matching on distributed graphs. (4) We experimentally verify the effectiveness and efficiency of these algorithms, using real-life data and synthetic data.Comment: VLDB201

    Variability-Aware Simulations of 5 nm Vertically Stacked Lateral Si Nanowires Transistors

    Get PDF
    In this work, we present a simulation study of vertically stacked lateral nanowires transistors (NWTs) considering various sources of statistical variability. Our simulation approach is based on various simulations techniques to capture the complexity in such ultra-scaled device
    corecore