311 research outputs found

    sCAM: An Untethered Insertable Laparoscopic Surgical Camera Robot

    Get PDF
    Fully insertable robotic imaging devices represent a promising future of minimally invasive laparoscopic vision. Emerging research efforts in this field have resulted in several proof-of-concept prototypes. One common drawback of these designs derives from their clumsy tethering wires which not only cause operational interference but also reduce camera mobility. Meanwhile, these insertable laparoscopic cameras are manipulated without any pose information or haptic feedback, which results in open loop motion control and raises concerns about surgical safety caused by inappropriate use of force.This dissertation proposes, implements, and validates an untethered insertable laparoscopic surgical camera (sCAM) robot. Contributions presented in this work include: (1) feasibility of an untethered fully insertable laparoscopic surgical camera, (2) camera-tissue interaction characterization and force sensing, (3) pose estimation, visualization, and feedback with sCAM, and (4) robotic-assisted closed-loop laparoscopic camera control. Borrowing the principle of spherical motors, camera anchoring and actuation are achieved through transabdominal magnetic coupling in a stator-rotor manner. To avoid the tethering wires, laparoscopic vision and control communication are realized with dedicated wireless links based on onboard power. A non-invasive indirect approach is proposed to provide real-time camera-tissue interaction force measurement, which, assisted by camera-tissue interaction modeling, predicts stress distribution over the tissue surface. Meanwhile, the camera pose is remotely estimated and visualized using complementary filtering based on onboard motion sensing. Facilitated by the force measurement and pose estimation, robotic-assisted closed-loop control has been realized in a double-loop control scheme with shared autonomy between surgeons and the robotic controller.The sCAM has brought robotic laparoscopic imaging one step further toward less invasiveness and more dexterity. Initial ex vivo test results have verified functions of the implemented sCAM design and the proposed force measurement and pose estimation approaches, demonstrating the technical feasibility of a tetherless insertable laparoscopic camera. Robotic-assisted control has shown its potential to free surgeons from low-level intricate camera manipulation workload and improve precision and intuitiveness in laparoscopic imaging

    Sistema de Simulación de la Iluminación Abdominal Basado en Mini Robots

    Get PDF
    Introduction: This document shows a system that simulates the illumination of the abdominal scene in laparoscopic operations using mini robots. The mini robots would be magnetically tied to the abdominal cavity and manipulated by an external robot arm. Two algorithms are tested in this system: one that moves the mini robot according to the movement of the endoscope, and another that moves from an analysis of the image captured by the scene.  Objective: To contribute to the illumination of the surgical scene by means of mini robots attached magnetically to the abdominal cavity. Methodology: A software tool was developed using Unity3D, which simulates the interior of the abdomen in laparoscopic operations, adding a new lighting: a mini light-type robot magnetically anchored to the abdominal wall. The mini robot has two different movements to illuminate the scene, one depends on the movement of the endoscope and the other on the image analysis performed. Results: Tests were performed with a representation of the real environment comparing it with the tests in the built tool, obtaining similar results and showing the potential of a mini robot to provide additional lighting to the surgeon if necessary. Conclusions: The designed algorithm allows a mini robot that is magnetically anchored in the abdominal wall to move to low-light areas following two options: a geometric relationship or movement as a result of image analysis.  Introducción: Este documento muestra un sistema que simula la iluminación de la escena abdominal en operaciones de laparoscopia utilizando mini robots. Los mini robots estarían atados magnéticamente a la cavidad abdominal y serían manipulados por un brazo robot externo. Dos algoritmos son probados en este sistema: uno que mueve al mini robot de acuerdo al movimiento del endoscopio, y otro que lo mueve a partir de un análisis de la imagen captada por la escena. Objetivo: Contribuir a la iluminación de la escena quirúrgica por medio de mini robots atados magnéticamente a la cavidad abdominal. Metodología: Se desarrolló una herramienta software por medio de Unity3D, la cual simula el interior del abdomen en operaciones de laparoscopia, agregándosele una nueva iluminación: un mini robot tipo luz anclado magnéticamente a la pared abdominal. El mini robot tiene dos movimientos diferentes para iluminar la escena, uno depende del movimiento del endoscopio y otro del análisis de imagen realizado.  Resultados: Se realizaron pruebas con una representación del entorno real comparándola con las pruebas en la herramienta construida, obteniéndose resultados similares y mostrando el potencial que tiene un mini robot para proporcionar una iluminación adicional al cirujano en caso de ser necesario.   Conclusiones: El algoritmo diseñado permite que un mini robot que estaría anclado magnéticamente a la pared abdominal, se mueva a zonas de baja iluminación siguiendo dos opciones: una relación geométrica o un movimiento como resultado de un análisis de imagen

    Smart Camera Robotic Assistant for Laparoscopic Surgery

    Get PDF
    The cognitive architecture also includes learning mechanisms to adapt the behavior of the robot to the different ways of working of surgeons, and to improve the robot behavior through experience, in a similar way as a human assistant would do. The theoretical concepts of this dissertation have been validated both through in-vitro experimentation in the labs of medical robotics of the University of Malaga and through in-vivo experimentation with pigs in the IACE Center (Instituto Andaluz de Cirugía Experimental), performed by expert surgeons.In the last decades, laparoscopic surgery has become a daily practice in operating rooms worldwide, which evolution is tending towards less invasive techniques. In this scenario, robotics has found a wide field of application, from slave robotic systems that replicate the movements of the surgeon to autonomous robots able to assist the surgeon in certain maneuvers or to perform autonomous surgical tasks. However, these systems require the direct supervision of the surgeon, and its capacity of making decisions and adapting to dynamic environments is very limited. This PhD dissertation presents the design and implementation of a smart camera robotic assistant to collaborate with the surgeon in a real surgical environment. First, it presents the design of a novel camera robotic assistant able to augment the capacities of current vision systems. This robotic assistant is based on an intra-abdominal camera robot, which is completely inserted into the patient’s abdomen and it can be freely moved along the abdominal cavity by means of magnetic interaction with an external magnet. To provide the camera with the autonomy of motion, the external magnet is coupled to the end effector of a robotic arm, which controls the shift of the camera robot along the abdominal wall. This way, the robotic assistant proposed in this dissertation has six degrees of freedom, which allow providing a wider field of view compared to the traditional vision systems, and also to have different perspectives of the operating area. On the other hand, the intelligence of the system is based on a cognitive architecture specially designed for autonomous collaboration with the surgeon in real surgical environments. The proposed architecture simulates the behavior of a human assistant, with a natural and intuitive human-robot interface for the communication between the robot and the surgeon

    A Patient-Specific Cardiac Phantom for Training and Pre-Procedure Surgical Planning

    Get PDF
    Minimally invasive cardiac procedures requiring a transseptal puncture are becoming increasingly common. For cases of complex or diseased anatomy, clinicians may benefit from using a patient-specific cardiac phantom for training, surgical planning, and the validation of devices or techniques. An imaging compatible cardiac phantom was developed to simulate a MitraClip ® procedure. The phantom contained a patient-specific cardiac model manufactured using tissue mimicking materials. To evaluate accuracy, the patient-specific model was imaged using CT, segmented, and the resulting point cloud data set was compared using absolute distance to the original patient data. The phantom was validated using a MitraClip ® device to ensure anatomical features and tools are identifiable under image guidance. Patient-specific cardiac phantoms may allow for surgical complications to be accounted for in pre-operative planning. The information gained by clinicians involved in planning and performing the procedure should lead to shorter procedural times and better outcomes for patients

    Disturbance Rejection in Multi-DOF Local Magnetic Actuation for Robotic Abdominal Surgery

    Get PDF
    The potential of multi-degrees-of-freedom (DOFs) local magnetic actuation (LMA) has been established in recent years for dexterous minimally invasive surgical manipulations. Nonetheless, having multiple magnetic based units, one for each DOF, within a close vicinity to each other leads to magnetic field interaction among the magnetic sources, hence, resulting in a disturbance to a given LMA unit. It is further realized that the disturbance is a result of actuation effort by the neighboring magnetic sources forming the LMA units, and that the actuation command to all LMA units is a known information to the controller. Therefore, partial information of the disturbance is known and can be exploited in a disturbance rejection strategy. In this letter, this disturbance is modeled and used to augment a simplified model of the systems dynamics of the LMA-based surgical manipulators. The internal model principle (IMP) strategy is selected in which an observer is designed to estimate the disturbance to be rejected. Numerical simulation as well as experimental validation were performed to validate the efficacy of the IMP. The results serve to remove a significant technical hurdle in bringing the new emerging technique of LMA into practical reality for abdominal surgeries
    • …
    corecore