2,929 research outputs found

    Position-Based Multi-Agent Dynamics for Real-Time Crowd Simulation (MiG paper)

    Full text link
    Exploiting the efficiency and stability of Position-Based Dynamics (PBD), we introduce a novel crowd simulation method that runs at interactive rates for hundreds of thousands of agents. Our method enables the detailed modeling of per-agent behavior in a Lagrangian formulation. We model short-range and long-range collision avoidance to simulate both sparse and dense crowds. On the particles representing agents, we formulate a set of positional constraints that can be readily integrated into a standard PBD solver. We augment the tentative particle motions with planning velocities to determine the preferred velocities of agents, and project the positions onto the constraint manifold to eliminate colliding configurations. The local short-range interaction is represented with collision and frictional contact between agents, as in the discrete simulation of granular materials. We incorporate a cohesion model for modeling collective behaviors and propose a new constraint for dealing with potential future collisions. Our new method is suitable for use in interactive games.Comment: 9 page

    Overview of crowd simulation in computer graphics

    Get PDF
    High-powered technology use computer graphics in education, entertainment, games, simulation, and virtual heritage applications has led it to become an important area of research. In simulation, according to Tecchia et al. (2002), it is important to create an interactive, complex, and realistic virtual world so that the user can have an immersive experience during navigation through the world. As the size and complexity of the environments in the virtual world increased, it becomes more necessary to populate them with peoples, and this is the reason why rendering the crowd in real-time is very crucial. Generally, crowd simulation consists of three important areas. They are realism of behavioral (Thompson and Marchant 1995), high-quality visualization (Dobbyn et al. 2005) and convergence of both areas. Realism of behavioral is mainly used for simple 2D visualizations because most of the attentions are concentrated on simulating the behaviors of the group. High quality visualization is regularly used for movie productions and computer games. It gives intention on producing more convincing visual rather than realism of behaviors. The convergences of both areas are mainly used for application like training systems. In order to make the training system more effective, the element of valid replication of the behaviors and high-quality visualization is added

    The impact of animations in the perception of a simulated crowd

    Get PDF
    Simulating virtual crowds is an important challenge in many areas such as games and virtual reality applications. A lot of effort has been dedicated to improving pathfinding, collision avoidance, or decision making, to achieve more realistic human-like behavior. However, crowd simulation will be far from appearing realistic as long as virtual humans are limited to walking animations. Including animation variety could greatly enhance the plausibility of the populated environment. In this paper, we evaluated to what extend animation variety can affect the perceived level of realism of a crowd, regardless of the appearance of the virtual agents (bots vs. humanoids). The goal of this study is to provide recommendations for crowd animation and rendering when simulating crowds. Our results show that the perceived realism of the crowd trajectories and animations is significantly higher when using a variety of animations as opposed to simply having locomotion animations, but only if we render realistic humanoids. If we can only render agents as bots, then there is no much gain from having animation variety, in fact, it could potentially lower the perceived quality of the trajectories.Peer ReviewedPostprint (author's final draft

    Crowd simulation and visualization

    Get PDF
    Large-scale simulation and visualization are essential topics in areas as different as sociology, physics, urbanism, training, entertainment among others. This kind of systems requires a vast computational power and memory resources commonly available in High Performance Computing HPC platforms. Currently, the most potent clusters have heterogeneous architectures with hundreds of thousands and even millions of cores. The industry trends inferred that exascale clusters would have thousands of millions. The technical challenges for simulation and visualization process in the exascale era are intertwined with difficulties in other areas of research, including storage, communication, programming models and hardware. For this reason, it is necessary prototyping, testing, and deployment a variety of approaches to address the technical challenges identified and evaluate the advantages and disadvantages of each proposed solution. The focus of this research is interactive large-scale crowd simulation and visualization. To exploit to the maximum the capacity of the current HPC infrastructure and be prepared to take advantage of the next generation. The project develops a new approach to scale crowd simulation and visualization on heterogeneous computing cluster using a task-based technique. Its main characteristic is hardware agnostic. It abstracts the difficulties that imply the use of heterogeneous architectures like memory management, scheduling, communications, and synchronization — facilitating development, maintenance, and scalability. With the goal of flexibility and take advantage of computing resources as best as possible, the project explores different configurations to connect the simulation with the visualization engine. This kind of system has an essential use in emergencies. Therefore, urban scenes were implemented as realistic as possible; in this way, users will be ready to face real events. Path planning for large-scale crowds is a challenge to solve, due to the inherent dynamism in the scenes and vast search space. A new path-finding algorithm was developed. It has a hierarchical approach which offers different advantages: it divides the search space reducing the problem complexity, it can obtain a partial path instead of wait for the complete one, which allows a character to start moving and compute the rest asynchronously. It can reprocess only a part if necessary with different levels of abstraction. A case study is presented for a crowd simulation in urban scenarios. Geolocated data are used, they were produced by mobile devices to predict individual and crowd behavior and detect abnormal situations in the presence of specific events. It was also address the challenge of combining all these individual’s location with a 3D rendering of the urban environment. The data processing and simulation approach are computationally expensive and time-critical, it relies thus on a hybrid Cloud-HPC architecture to produce an efficient solution. Within the project, new models of behavior based on data analytics were developed. It was developed the infrastructure to be able to consult various data sources such as social networks, government agencies or transport companies such as Uber. Every time there is more geolocation data available and better computation resources which allow performing analysis of greater depth, this lays the foundations to improve the simulation models of current crowds. The use of simulations and their visualization allows to observe and organize the crowds in real time. The analysis before, during and after daily mass events can reduce the risks and associated logistics costs.La simulación y visualización a gran escala son temas esenciales en áreas tan diferentes como la sociología, la física, el urbanismo, la capacitación, el entretenimiento, entre otros. Este tipo de sistemas requiere una gran capacidad de cómputo y recursos de memoria comúnmente disponibles en las plataformas de computo de alto rendimiento. Actualmente, los equipos más potentes tienen arquitecturas heterogéneas con cientos de miles e incluso millones de núcleos. Las tendencias de la industria infieren que los equipos en la era exascale tendran miles de millones. Los desafíos técnicos en el proceso de simulación y visualización en la era exascale se entrelazan con dificultades en otras áreas de investigación, incluidos almacenamiento, comunicación, modelos de programación y hardware. Por esta razón, es necesario crear prototipos, probar y desplegar una variedad de enfoques para abordar los desafíos técnicos identificados y evaluar las ventajas y desventajas de cada solución propuesta. El foco de esta investigación es la visualización y simulación interactiva de multitudes a gran escala. Aprovechar al máximo la capacidad de la infraestructura actual y estar preparado para aprovechar la próxima generación. El proyecto desarrolla un nuevo enfoque para escalar la simulación y visualización de multitudes en un clúster de computo heterogéneo utilizando una técnica basada en tareas. Su principal característica es que es hardware agnóstico. Abstrae las dificultades que implican el uso de arquitecturas heterogéneas como la administración de memoria, las comunicaciones y la sincronización, lo que facilita el desarrollo, el mantenimiento y la escalabilidad. Con el objetivo de flexibilizar y aprovechar los recursos informáticos lo mejor posible, el proyecto explora diferentes configuraciones para conectar la simulación con el motor de visualización. Este tipo de sistemas tienen un uso esencial en emergencias. Por lo tanto, se implementaron escenas urbanas lo más realistas posible, de esta manera los usuarios estarán listos para enfrentar eventos reales. La planificación de caminos para multitudes a gran escala es un desafío a resolver, debido al dinamismo inherente en las escenas y el vasto espacio de búsqueda. Se desarrolló un nuevo algoritmo de búsqueda de caminos. Tiene un enfoque jerárquico que ofrece diferentes ventajas: divide el espacio de búsqueda reduciendo la complejidad del problema, puede obtener una ruta parcial en lugar de esperar a la completa, lo que permite que un personaje comience a moverse y calcule el resto de forma asíncrona, puede reprocesar solo una parte si es necesario con diferentes niveles de abstracción. Se presenta un caso de estudio para una simulación de multitud en escenarios urbanos. Se utilizan datos geolocalizados producidos por dispositivos móviles para predecir el comportamiento individual y público y detectar situaciones anormales en presencia de eventos específicos. También se aborda el desafío de combinar la ubicación de todos estos individuos con una representación 3D del entorno urbano. Dentro del proyecto, se desarrollaron nuevos modelos de comportamiento basados ¿¿en el análisis de datos. Se creo la infraestructura para poder consultar varias fuentes de datos como redes sociales, agencias gubernamentales o empresas de transporte como Uber. Cada vez hay más datos de geolocalización disponibles y mejores recursos de cómputo que permiten realizar un análisis de mayor profundidad, esto sienta las bases para mejorar los modelos de simulación de las multitudes actuales. El uso de simulaciones y su visualización permite observar y organizar las multitudes en tiempo real. El análisis antes, durante y después de eventos multitudinarios diarios puede reducir los riesgos y los costos logísticos asociadosPostprint (published version

    Comparison of crowd simulation for building evacuation and an alternative approach

    Get PDF
    This paper presents an overview of crowd simulation models, their limitations, and an alternative agent-based approch. First we introduce several methods and then we focus on two widely used and validated simulation tools that use grid-based models. We discus the artifacts that these models introduce regarding the way they treat the space and the implication that this has in the movement of the agents during the simulation. We also describe the limitations that current commercial software tools have in terms of simulating human psychology and physiology. The paper discusses an agent-based alternative approach developed to overcome these limitations. The model allows for the simulation of human movement that can provide results more closely describing behavior of real people during an emergency situation. Flow rates, densities and speeds emerge in our model from the physical interactions between people instead of being predefined.Postprint (published version
    corecore