196 research outputs found

    THE ECONOMIC IMPACTS OF A FOOT-AND-MOUTH DISEASE OUTBREAK: A REGIONAL ANALYSIS

    Get PDF
    Contagious animal diseases like foot-and-mouth disease (FMD) are often referred to as economic diseases because of the magnitude of economic harm they can cause to producers and to local communities. This study demonstrates the local economic impact of a hypothetical FMD outbreak in southwest Kansas, an area with high density of cattle feeding. The expected (most probable) economic impact of the disease hinges heavily on where the incidence of the disease occurs. If the disease were to occur in a cow-calf herd in the region economic impact is expected to be relatively small compared to if it were introduced simultaneously in five large feedlots in southwest Kansas. Disease surveillance, management strategies, mitigation investment, and overall diligence clearly need to be much greater in concentrated cattle feeding and processing areas at the large feeding operations in the region.Livestock Production/Industries,

    amei: An R Package for the Adaptive Management of Epidemiological Interventions

    Get PDF
    The amei package for R is a tool that provides a flexible statistical framework for generating optimal epidemiological interventions that are designed to minimize the total expected cost of an emerging epidemic. Uncertainty regarding the underlying disease parameters is propagated through to the decision process via Bayesian posterior inference. The strategies produced through this framework are adaptive: vaccination schedules are iteratively adjusted to reflect the anticipated trajectory of the epidemic given the current population state and updated parameter estimates. This document briefly covers the background and methodology underpinning the implementation provided by the package and contains extensive examples showing the functions and methods in action.

    Simulating Foodborne Pathogens in Poultry Production and Processing to Defend Against Intentional Contamination

    Get PDF
    There is a lack of data in recent history of food terrorism attacks, and as such, it is difficult to predict its impact. The food supply industry is one of the most vulnerable industries for terrorist threats while the poultry industry is one of the largest food industries in the United States. A small food terrorism attack against just a single poultry processing center has the potential to affect a much larger population than its immediate consumers. In this work, the spread of foodborne pathogens is simulated in a poultry production and processing system to defend against intentional contamination. An agent-based simulated environment that represents the farm, processing plant, homes, and restaurants is developed, which contains both poultry agents and human agents that move through the system and possibly infect each other. The simulation is run varying several parameters that include probability of infection if exposed for both poultry and humans. The simulation predicts the number of infected poultry and humans over time

    Anomaly Detection in Time Series: Theoretical and Practical Improvements for Disease Outbreak Detection

    Get PDF
    The automatic collection and increasing availability of health data provides a new opportunity for techniques to monitor this information. By monitoring pre-diagnostic data sources, such as over-the-counter cough medicine sales or emergency room chief complaints of cough, there exists the potential to detect disease outbreaks earlier than traditional laboratory disease confirmation results. This research is particularly important for a modern, highly-connected society, where the onset of disease outbreak can be swift and deadly, whether caused by a naturally occurring global pandemic such as swine flu or a targeted act of bioterrorism. In this dissertation, we first describe the problem and current state of research in disease outbreak detection, then provide four main additions to the field. First, we formalize a framework for analyzing health series data and detecting anomalies: using forecasting methods to predict the next day's value, subtracting the forecast to create residuals, and finally using detection algorithms on the residuals. The formalized framework indicates the link between the forecast accuracy of the forecast method and the performance of the detector, and can be used to quantify and analyze the performance of a variety of heuristic methods. Second, we describe improvements for the forecasting of health data series. The application of weather as a predictor, cross-series covariates, and ensemble forecasting each provide improvements to forecasting health data. Third, we describe improvements for detection. This includes the use of multivariate statistics for anomaly detection and additional day-of-week preprocessing to aid detection. Most significantly, we also provide a new method, based on the CuScore, for optimizing detection when the impact of the disease outbreak is known. This method can provide an optimal detector for rapid detection, or for probability of detection within a certain timeframe. Finally, we describe a method for improved comparison of detection methods. We provide tools to evaluate how well a simulated data set captures the characteristics of the authentic series and time-lag heatmaps, a new way of visualizing daily detection rates or displaying the comparison between two methods in a more informative way

    amei: An R Package for the Adaptive Management of Epidemiological Interventions

    Get PDF
    The <b>amei</b> package for <b>R</b> is a tool that provides a flexible statistical framework for generating optimal epidemiological interventions that are designed to minimize the total expected cost of an emerging epidemic. Uncertainty regarding the underlying disease parameters is propagated through to the decision process via Bayesian posterior inference. The strategies produced through this framework are adaptive: vaccination schedules are iteratively adjusted to reflect the anticipated trajectory of the epidemic given the current population state and updated parameter estimates. This document briefly covers the background and methodology underpinning the implementation provided by the package and contains extensive examples showing the functions and methods in action

    Characterising Livestock System Zoonoses Hotspots

    Get PDF
    A systematic review of the published literature was undertaken, to explore the ability of different types of model to help identify the relative importance of different drivers leading to the development of zoonoses hotspots. We estimated that out of 373 papers we included in our review, 108 papers touched upon the objective of 'Assessment of interventions and intervention policies', 75 addressed the objective of 'Analysis of economic aspects of disease outbreaks and interventions', 67 the objective of 'Prediction of future outbreaks', but only 37 broadly addressed the objective of 'Sensitivity analysis to identify criteria leading to enhanced risk'. Most models of zoonotic diseases are currently capturing outbreaks over relatively short time and largely ignoring socio-economic drivers leading to pathogen emergence, spill-over and spread. In order to study long-term changes we need to understand how socio-economic and climatic changes affect structure of livestock production and how these in turn affect disease emergence and spread. Models capable of describing this processes do not appear to exist, although some progress has been made in linking social and economical aspects of livestock production and in linking economics to disease dynamics. Henceforth we conclude that a new modelling framework is required that expands and formalises the 'one world, one health' strategy, enabling its deployment in the re-thinking of prevention and control strategies. Although modelling can only provide means to identify risks associated with socio-economic changes, it can never be a substitute for data collection. Finally, we note that uncertainty analysis and uncertainty communication form a key element of modelling process and yet are rarely addressed

    Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America

    Full text link
    As South and Central American countries prepare for increased birth defects from Zika virus outbreaks and plan for mitigation strategies to minimize ongoing and future outbreaks, understanding important characteristics of Zika outbreaks and how they vary across regions is a challenging and important problem. We developed a mathematical model for the 2015 Zika virus outbreak dynamics in Colombia, El Salvador, and Suriname. We fit the model to publicly available data provided by the Pan American Health Organization, using Approximate Bayesian Computation to estimate parameter distributions and provide uncertainty quantification. An important model input is the at-risk susceptible population, which can vary with a number of factors including climate, elevation, population density, and socio-economic status. We informed this initial condition using the highest historically reported dengue incidence modified by the probable dengue reporting rates in the chosen countries. The model indicated that a country-level analysis was not appropriate for Colombia. We then estimated the basic reproduction number, or the expected number of new human infections arising from a single infected human, to range between 4 and 6 for El Salvador and Suriname with a median of 4.3 and 5.3, respectively. We estimated the reporting rate to be around 16% in El Salvador and 18% in Suriname with estimated total outbreak sizes of 73,395 and 21,647 people, respectively. The uncertainty in parameter estimates highlights a need for research and data collection that will better constrain parameter ranges.Comment: 35 pages, 16 figure
    • …
    corecore