8 research outputs found

    Development of a sensor for microvibrations measurement in the AlbaSat CubeSat mission

    Get PDF
    openMicrovibrations on spacecraft represent an issue for payloads requiring high pointing accuracy and/or stability over time, and they might represent a particular concern for CubeSats and small satellites that, usually, are not equipped with very-high performance attitude control systems. Hence, collecting reliable measures of the vibration spectra during the operations of a CubeSat represents a significant research activity. This thesis presents the development of a sensor, configured as a payload within the AlbaSat mission, capable of accurately measuring the microvibrations in space, with particular focus on those produced by the Momentum Exchange Devices (MED), i.e., Reaction or Momentum Wheels, that represent one of the most important microvibrations sources. The thesis takes place in the framework of the AlbaSat mission. AlbaSat is a 2U CubeSat developed by a student team of the University of Padova under the “Fly Your Satellite! – Design Booster” programme promoted by the European Space Agency (ESA). The mission has four different objectives: (1) to collect measurements of the space debris environment in-situ, (2) to measure the microvibrations on board the CubeSat, (3) to precisely determine the position of the satellite through laser ranging and (4) to investigate alternative systems for possible Satellite Quantum Communication applications on nanosatellites. The requirements for the correct sizing of the sensor and the chosen physical and functional architecture are defined and presented in the thesis. A meticulous schedule for functional tests is finally outlined, aimed at verifying the correct functionality of the microvibration sensor. These tests serve as a starting point for the future development of the payload.Microvibrations on spacecraft represent an issue for payloads requiring high pointing accuracy and/or stability over time, and they might represent a particular concern for CubeSats and small satellites that, usually, are not equipped with very-high performance attitude control systems. Hence, collecting reliable measures of the vibration spectra during the operations of a CubeSat represents a significant research activity. This thesis presents the development of a sensor, configured as a payload within the AlbaSat mission, capable of accurately measuring the microvibrations in space, with particular focus on those produced by the Momentum Exchange Devices (MED), i.e., Reaction or Momentum Wheels, that represent one of the most important microvibrations sources. The thesis takes place in the framework of the AlbaSat mission. AlbaSat is a 2U CubeSat developed by a student team of the University of Padova under the “Fly Your Satellite! – Design Booster” programme promoted by the European Space Agency (ESA). The mission has four different objectives: (1) to collect measurements of the space debris environment in-situ, (2) to measure the microvibrations on board the CubeSat, (3) to precisely determine the position of the satellite through laser ranging and (4) to investigate alternative systems for possible Satellite Quantum Communication applications on nanosatellites. The requirements for the correct sizing of the sensor and the chosen physical and functional architecture are defined and presented in the thesis. A meticulous schedule for functional tests is finally outlined, aimed at verifying the correct functionality of the microvibration sensor. These tests serve as a starting point for the future development of the payload

    20th Space Simulation Conference: The Changing Testing Paradigm

    Get PDF
    The Institute of Environmental Sciences' Twentieth Space Simulation Conference, "The Changing Testing Paradigm" provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme "The Changing Testing Paradigm.

    20th Space Simulation Conference: The Changing Testing Paradigm

    Get PDF
    The Institute of Environmental Sciences and Technology's Twentieth Space Simulation Conference, "The Changing Testing Paradigm" provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme "The Changing Testing Paradigm.

    Observer-based event-triggered and set-theoretic neuro-adaptive controls for constrained uncertain systems

    Get PDF
    In this study, several new observer-based event-triggered and set-theoretic control schemes are presented to advance the state of the art in neuro-adaptive controls. In the first part, six new event-triggered neuro-adaptive control (ETNAC) schemes are presented for uncertain linear systems. These comprehensive designs offer flexibility to choose a design depending upon system performance requirements. Stability proofs for each scheme are presented and their performance is analyzed using benchmark examples. In the second part, the scope of the ETNAC is extended to uncertain nonlinear systems. It is applied to a case of precision formation flight of the microsatellites at the Sun-Earth/Moon L1 libration point. This dynamic system is selected to evaluate the performance of the ETNAC techniques in a setting that is highly nonlinear and chaotic in nature. Moreover, factors like restricted controls, response to uncertainties and jittering makes the controller design even trickier for maintaining a tight formation precision. Lyapunov function-based stability analysis and numerical results are presented. Note that most real-world systems involve constraints due to hardware limitations, disturbances, uncertainties, nonlinearities, and cannot always be efficiently controlled by using linearized models. To address all these issues simultaneously, a barrier Lyapunov function-based control architecture called the segregated prescribed performance guaranteeing neuro-adaptive control is developed and tested for the constrained uncertain nonlinear systems, in the third part. It guarantees strict performance that can be independently prescribed for each individual state and/or error signal of the given system. Furthermore, the proposed technique can identify unknown dynamics/uncertainties online and provides a way to regulate the control input --Abstract, page iv

    ALADIN laser frequency stability and its impact on the Aeolus wind error

    Get PDF
    The acquisition of atmospheric wind profiles on a global scale was realized by the launch of the Aeolus satellite, carrying the unique Atmospheric LAser Doppler INstrument (ALADIN), the first Doppler wind lidar in space. One major component of ALADIN is its high-power, ultraviolet (UV) laser transmitter, which is based on an injection-seeded, frequency-tripled Nd:YAG laser and fulfills a set of demanding requirements in terms of pulse energy, pulse length, repetition rate, and spatial and spectral beam properties. In particular, the frequency stability of the laser emission is an essential parameter which determines the performance of the lidar instrument as the Doppler frequency shifts to be detected are on the order of 10^8 smaller than the frequency of the emitted UV light. This article reports the assessment of the ALADIN laser frequency stability and its influence on the quality of the Aeolus wind data. Excellent frequency stability with pulse-to-pulse variations of about 10 MHz (root mean square) is evident for over more than 2 years of operations in space despite the permanent occurrence of short periods with significantly enhanced frequency noise (> 30 MHz). The latter were found to coincide with specific rotation speeds of the satellite's reaction wheels, suggesting that the root cause are micro-vibrations that deteriorate the laser stability on timescales of a few tens of seconds. Analysis of the Aeolus wind error with respect to European Centre for Medium-Range Weather Forecasts (ECMWF) model winds shows that the temporally degraded frequency stability of the ALADIN laser transmitter has only a minor influence on the wind data quality on a global scale, which is primarily due to the small percentage of wind measurements for which the frequency fluctuations are considerably enhanced. Hence, although the Mie wind bias is increased by 0.3 m/s at times when the frequency stability is worse than 20 MHz, the small contribution of 4 % from all Mie wind results renders this effect insignificant (< 0.1 m/s) when all winds are considered. The impact on the Rayleigh wind bias is negligible even at high frequency noise. Similar results are demonstrated for the apparent speed of the ground returns that are measured with the Mie and Rayleigh channel of the ALADIN receiver. Here, the application of a frequency stability threshold that filters out wind observations with variations larger than 20 or 10 MHz improves the accuracy of the Mie and Rayleigh ground velocities by only 0.05 and 0.10 m/s, respectively, however at the expense of useful ground data

    Spacelab Science Results Study

    Get PDF
    Beginning with OSTA-1 in November 1981 and ending with Neurolab in March 1998, a total of 36 Shuttle missions carried various Spacelab components such as the Spacelab module, pallet, instrument pointing system, or mission peculiar experiment support structure. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the U.S., Europe, and Japan. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and if appropriate, where the knowledge they produced has been applied

    Danish activities concerning noise in the environment (A)

    Get PDF
    corecore