440 research outputs found

    Beyond the classic receptive field: the effect of contextual stimuli

    Get PDF
    Following the pioneering studies of the receptive field (RF), the concept gained further significance for visual perception by the discovery of input effects from beyond the classical RF. These studies demonstrated that neuronal responses could be modulated by stimuli outside their RFs, consistent with the perception of induced brightness, color, orientation, and motion. Lesion scotomata are similarly modulated perceptually from the surround by RFs that have migrated from the interior to the outer edge of the scotoma and in this way provide filling-in of the void. Large RFs are advantageous to this task. In higher visual areas, such as the middle temporal and inferotemporal lobe, RFs increase in size and lose most of their retinotopic organization while encoding increasingly complex features. Whereas lowerlevel RFs mediate perceptual filling-in, contour integration, and figure–ground segregation, RFs at higher levels serve the perception of grouping by common fate, biological motion, and other biologically relevant stimuli, such as faces. Studies in alert monkeys while freely viewing natural scenes showed that classical and nonclassical RFs cooperate in forming representations of the visual world. Today, our understanding of the mechanisms underlying the RF is undergoing a quantum leap. What had started out as a hierarchical feedforward concept for simple stimuli, such as spots, lines, and bars, now refers to mechanisms involving ascending, descending, and lateral signal flow. By extension of the bottom-up paradigm, RFs are nowadays understood as adaptive processors, enabling the predictive coding of complex scenes. Top-down effects guiding attention and tuned to task-relevant information complement the bottom-up analysis

    Engineering Data Compendium. Human Perception and Performance, Volume 1

    Get PDF
    The concept underlying the Engineering Data Compendium was the product an R and D program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 1, which contains sections on Visual Acquisition of Information, Auditory Acquisition of Information, and Acquisition of Information by Other Senses

    Activity in area V3A predicts positions of moving objects

    Get PDF
    No description supplie
    • …
    corecore