30 research outputs found

    Understanding Security Behavior of Real Users: Analysis of a Phishing Study

    Get PDF
    This paper presents a set of statistical analyses on an empirical study of phishing email sorting by real online users. Participants were assigned to multitasking and/or incentive conditions in unattended web-based tasks that are the most realistic in any comparable study to date. Our three stages of analyses included logistic regression models to identify individual phishing “cues” contributing to successful classifications, statistical significance tests assessing the links between participants’ training experience and self-assessments of success to their actual performance, significance tests searching for significant demographic factors influencing task completion performance, and lastly k-means clustering based on a range of performance measures and utilizing participants’ demographic attributes. In particular, the results indicate that multitasking and incentives create complex dynamics while demographic traits and cybersecurity training can be informative predictors of user security behavior. These findings strongly support the benefits of security training and education and advocate for customized and differentiated interventions to increase users’ success of correctly identifying phishing emails

    Cyber Threat Intelligence based Holistic Risk Quantification and Management

    Get PDF

    Passphrase and keystroke dynamics authentication: security and usability

    Get PDF
    It was found that employees spend a total 2.25 days within a 60 day period on password related activities. Another study found that over 85 days an average user will create 25 accounts with an average of 6.5 unique passwords. These numbers are expected to increase over time as more systems become available. In addition, the use of 6.5 unique passwords highlight that passwords are being reused which creates security concerns as multiple systems will be accessible by an unauthorised party if one of these passwords is leaked. Current user authentication solutions either increase security or usability. When security increases, usability decreases, or vice versa. To add to this, stringent security protocols encourage unsecure behaviours by the user such as writing the password down on a piece of paper to remember it. It was found that passphrases require less cognitive effort than passwords and because passphrases are stronger than passwords, they don’t need to be changed as frequently as passwords. This study aimed to assess a two-tier user authentication solution that increases security and usability. The proposed solution uses passphrases in conjunction with keystroke dynamics to address this research problem. The design science research approach was used to guide this study. The study’s theoretical foundation includes three theories. The Shannon entropy formula was used to calculate the strength of passwords, passphrases and keystroke dynamics. The chunking theory assisted in assessing password and passphrase memorisation issues and the keystroke-level model was used to assess password and passphrase typing issues. Two primary data collection methods were used to evaluate the findings and to ensure that gaps in the research were filled. A login assessment experiment collected data on user authentication and user-system interaction for passwords and passphrases. Plus, an expert review was conducted to verify findings and assess the research artefact in the form of a model. The model can be used to assist with the implementation of a two-tier user authentication solution which involves passphrases and keystroke dynamics. There are a number of components that need to be considered to realise the benefits of this solution and ensure successful implementation

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues

    Cyber defensive capacity and capability::A perspective from the financial sector of a small state

    Get PDF
    This thesis explores ways in which the financial sectors of small states are able todefend themselves against ever-growing cyber threats, as well as ways these states can improve their cyber defense capability in order to withstand current andfuture attacks. To date, the context of small states in general is understudied. This study presents the challenges faced by financial sectors in small states with regard to withstanding cyberattacks. This study applies a mixed method approach through the use of various surveys, brainstorming sessions with financial sector focus groups, interviews with critical infrastructure stakeholders, a literature review, a comparative analysis of secondary data and a theoretical narrative review. The findings suggest that, for the Aruban financial sector, compliance is important, as with minimal drivers, precautionary behavior is significant. Countermeasures of formal, informal, and technical controls need to be in place. This study indicates the view that defending a small state such as Aruba is challenging, yet enough economic indicators indicate it not being outside the realm of possibility. On a theoretical level, this thesis proposes a conceptual “whole-of-cyber” model inspired by military science and the VSM (Viable Systems Model). The concept of fighting power components and governance S4 function form cyber defensive capacity’s shield and capability. The “whole-of-cyber” approach may be a good way to compensate for the lack of resources of small states. Collaboration may be an only out, as the fastest-growing need will be for advanced IT skillsets

    Computational Methods for Medical and Cyber Security

    Get PDF
    Over the past decade, computational methods, including machine learning (ML) and deep learning (DL), have been exponentially growing in their development of solutions in various domains, especially medicine, cybersecurity, finance, and education. While these applications of machine learning algorithms have been proven beneficial in various fields, many shortcomings have also been highlighted, such as the lack of benchmark datasets, the inability to learn from small datasets, the cost of architecture, adversarial attacks, and imbalanced datasets. On the other hand, new and emerging algorithms, such as deep learning, one-shot learning, continuous learning, and generative adversarial networks, have successfully solved various tasks in these fields. Therefore, applying these new methods to life-critical missions is crucial, as is measuring these less-traditional algorithms' success when used in these fields

    Integrating a usable security protocol for user authentication into the requirements and design process

    Get PDF
    L'utilisabilité et la sécurité sont des éléments cruciaux dans le processus d'authentification des utilisateurs. L'un des défis majeurs auquel font face les organisations aujourd'hui est d'offrir des systèmes d'accès aux ressources logiques (par exemple, une application informatique) et physiques (par exemple, un bâtiment) qui soient à la fois sécurisées et utilisables. Afin d'atteindre ces objectifs, il faut d'abord mettre en œuvre les trois composantes indispensables que sont l'identification (c.-à-d., définir l'identité d'un utilisateur), l'authentification (c.-à-d., vérifier l'identité d'un utilisateur) et l'autorisation (c.-à-d., accorder des droits d'accès à un utilisateur). Plus particulièrement, la recherche en authentification de l'utilisateur est essentielle. Sans authentification, par exemple, des systèmes informatiques ne sont pas capables de vérifier si un utilisateur demandant l'accès à une ressource possède les droits de le faire. Bien que plusieurs travaux de recherche aient porté sur divers mécanismes de sécurité, très peu de recherches jusqu'à présent ont porté sur l'utilisabilité et la sécurité des méthodes d'authentification des utilisateurs. Pour cette raison, il nous paraît nécessaire de développer un protocole d'utilisabilité et de sécurité pour concevoir les méthodes d'authentification des utilisateurs. La thèse centrale de ce travail de recherche soutient qu'il y a un conflit intrinsèque entre la création de systèmes qui soient sécurisés et celle de systèmes qui soient facile d'utilisation. Cependant, l'utilisabilité et la sécurité peuvent être construites de manière synergique en utilisant des outils d'analyse et de conception qui incluent des principes d'utilisabilité et de sécurité dès l'étape d'Analyse et de Conception de la méthode d'authentification. Dans certaines situations il est possible d'améliorer simultanément l'utilisabilité et la sécurité en revisitant les décisions de conception prises dans le passé. Dans d'autres cas, il est plus avantageux d'aligner l'utilisabilité et la sécurité en changeant l'environnement régulateur dans lequel les ordinateurs opèrent. Pour cette raison, cette thèse a comme objectif principal non pas d'adresser l'utilisabilité et la sécurité postérieurement à la fabrication du produit final, mais de faire de la sécurité un résultat naturel de l'étape d'Analyse et de Conception du cycle de vie de la méthode d'authentification. \ud ______________________________________________________________________________ \ud MOTS-CLÉS DE L’AUTEUR : authentification de l'utilisateur, utilisabilité, sécurité informatique, contrôle d'accès

    ICSEA 2021: the sixteenth international conference on software engineering advances

    Get PDF
    The Sixteenth International Conference on Software Engineering Advances (ICSEA 2021), held on October 3 - 7, 2021 in Barcelona, Spain, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. The conference had the following tracks: Advances in fundamentals for software development Advanced mechanisms for software development Advanced design tools for developing software Software engineering for service computing (SOA and Cloud) Advanced facilities for accessing software Software performance Software security, privacy, safeness Advances in software testing Specialized software advanced applications Web Accessibility Open source software Agile and Lean approaches in software engineering Software deployment and maintenance Software engineering techniques, metrics, and formalisms Software economics, adoption, and education Business technology Improving productivity in research on software engineering Trends and achievements Similar to the previous edition, this event continued to be very competitive in its selection process and very well perceived by the international software engineering community. As such, it is attracting excellent contributions and active participation from all over the world. We were very pleased to receive a large amount of top quality contributions. We take here the opportunity to warmly thank all the members of the ICSEA 2021 technical program committee as well as the numerous reviewers. The creation of such a broad and high quality conference program would not have been possible without their involvement. We also kindly thank all the authors that dedicated much of their time and efforts to contribute to the ICSEA 2021. We truly believe that thanks to all these efforts, the final conference program consists of top quality contributions. This event could also not have been a reality without the support of many individuals, organizations and sponsors. We also gratefully thank the members of the ICSEA 2021 organizing committee for their help in handling the logistics and for their work that is making this professional meeting a success. We hope the ICSEA 2021 was a successful international forum for the exchange of ideas and results between academia and industry and to promote further progress in software engineering research

    Proceedings, MSVSCC 2016

    Get PDF
    Proceedings of the 10th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 14, 2016 at VMASC in Suffolk, Virginia
    corecore