1,296 research outputs found

    Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    Get PDF
    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate microscopic liquid flow by osmotic effects and how such microscopic flow can be linked to whole-brain macroscopic flow. We thus include the key elements in a putative multiscale theory with astrocytes linking neural activity on a microscopic scale to macroscopic fluid flow.Comment: 27 pages, 7 figure

    Arbor -- a morphologically-detailed neural network simulation library for contemporary high-performance computing architectures

    Full text link
    We introduce Arbor, a performance portable library for simulation of large networks of multi-compartment neurons on HPC systems. Arbor is open source software, developed under the auspices of the HBP. The performance portability is by virtue of back-end specific optimizations for x86 multicore, Intel KNL, and NVIDIA GPUs. When coupled with low memory overheads, these optimizations make Arbor an order of magnitude faster than the most widely-used comparable simulation software. The single-node performance can be scaled out to run very large models at extreme scale with efficient weak scaling. HPC, GPU, neuroscience, neuron, softwareComment: PDP 2019 27th Euromicro International Conference on Parallel, Distributed and Network-based Processin

    Open Source Brain: A Collaborative Resource for Visualizing, Analyzing, Simulating, and Developing Standardized Models of Neurons and Circuits

    Get PDF
    Computational models are powerful tools for exploring the properties of complex biological systems. In neuroscience, data-driven models of neural circuits that span multiple scales are increasingly being used to understand brain function in health and disease. But their adoption and reuse has been limited by the specialist knowledge required to evaluate and use them. To address this, we have developed Open Source Brain, a platform for sharing, viewing, analyzing, and simulating standardized models from different brain regions and species. Model structure and parameters can be automatically visualized and their dynamical properties explored through browser-based simulations. Infrastructure and tools for collaborative interaction, development, and testing are also provided. We demonstrate how existing components can be reused by constructing new models of inhibition-stabilized cortical networks that match recent experimental results. These features of Open Source Brain improve the accessibility, transparency, and reproducibility of models and facilitate their reuse by the wider community

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF

    Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics

    Get PDF
    To establish the relationship between locomotory behavior and dynamics of neural circuits in the nematode C. elegans we combined molecular and theoretical approaches. In particular, we quantitatively analyzed the motion of C. elegans with defective synaptic GABA and acetylcholine transmission, defective muscle calcium signaling, and defective muscles and cuticle structures, and compared the data with our systems level circuit model. The major experimental findings are: (i) anterior-to-posterior gradients of body bending flex for almost all strains both for forward and backward motion, and for neuronal mutants, also analogous weak gradients of undulatory frequency, (ii) existence of some form of neuromuscular (stretch receptor) feedback, (iii) invariance of neuromuscular wavelength, (iv) biphasic dependence of frequency on synaptic signaling, and (v) decrease of frequency with increase of the muscle time constant. Based on (i) we hypothesize that the Central Pattern Generator (CPG) is located in the head both for forward and backward motion. Points (i) and (ii) are the starting assumptions for our theoretical model, whose dynamical patterns are qualitatively insensitive to the details of the CPG design if stretch receptor feedback is sufficiently strong and slow. The model reveals that stretch receptor coupling in the body wall is critical for generation of the neuromuscular wave. Our model agrees with our behavioral data(iii), (iv), and (v), and with other pertinent published data, e.g., that frequency is an increasing function of muscle gap-junction coupling.Comment: Neural control of C. elegans motion with genetic perturbation
    corecore