54,837 research outputs found

    Towards A Theory-Of-Mind-Inspired Generic Decision-Making Framework

    Full text link
    Simulation is widely used to make model-based predictions, but few approaches have attempted this technique in dynamic physical environments of medium to high complexity or in general contexts. After an introduction to the cognitive science concepts from which this work is inspired and the current development in the use of simulation as a decision-making technique, we propose a generic framework based on theory of mind, which allows an agent to reason and perform actions using multiple simulations of automatically created or externally inputted models of the perceived environment. A description of a partial implementation is given, which aims to solve a popular game within the IJCAI2013 AIBirds contest. Results of our approach are presented, in comparison with the competition benchmark. Finally, future developments regarding the framework are discussed.Comment: 7 pages, 5 figures, IJCAI 2013 Symposium on AI in Angry Bird

    The CHREST architecture of cognition : the role of perception in general intelligence

    Get PDF
    Original paper can be found at: http://www.atlantis-press.com/publications/aisr/AGI-10/ Copyright Atlantis Press. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.This paper argues that the CHREST architecture of cognition can shed important light on developing artificial general intelligence. The key theme is that "cognition is perception." The description of the main components and mechanisms of the architecture is followed by a discussion of several domains where CHREST has already been successfully applied, such as the psychology of expert behaviour, the acquisition of language by children, and the learning of multiple representations in physics. The characteristics of CHREST that enable it to account for empirical data include: self-organisation, an emphasis on cognitive limitations, the presence of a perception-learning cycle, and the use of naturalistic data as input for learning. We argue that some of these characteristics can help shed light on the hard questions facing theorists developing artificial general intelligence, such as intuition, the acquisition and use of concepts and the role of embodiment

    Computer modeling of human decision making

    Get PDF
    Models of human decision making are reviewed. Models which treat just the cognitive aspects of human behavior are included as well as models which include motivation. Both models which have associated computer programs, and those that do not, are considered. Since flow diagrams, that assist in constructing computer simulation of such models, were not generally available, such diagrams were constructed and are presented. The result provides a rich source of information, which can aid in construction of more realistic future simulations of human decision making

    Comparison of signalized junction control strategies using individual vehicle position data

    No full text
    This paper is concerned with the development of control strategies for urban signalized junction that can make use of individual vehicle position data from localization probes on board the vehicles. Strategy development involves simulating the behaviour of vehicles as they negotiate junctions controlled by prototype strategies and evaluating performance. Two strategies are discussed in this paper, a simple auctioning agent strategy and an extended auctioning agent strategy where a machine learning approach is used to enable agents to be trained by a human expert to improve performance. The performance of these two strategies are compared with each other and with the MOVA algorithm in simulated tests. The results show that auctioning agents using individual vehicle position data can out perform MOVA, but that this performance can be improved further still by using learning auctioning agents trained by a human expert

    Imitating Driver Behavior with Generative Adversarial Networks

    Full text link
    The ability to accurately predict and simulate human driving behavior is critical for the development of intelligent transportation systems. Traditional modeling methods have employed simple parametric models and behavioral cloning. This paper adopts a method for overcoming the problem of cascading errors inherent in prior approaches, resulting in realistic behavior that is robust to trajectory perturbations. We extend Generative Adversarial Imitation Learning to the training of recurrent policies, and we demonstrate that our model outperforms rule-based controllers and maximum likelihood models in realistic highway simulations. Our model both reproduces emergent behavior of human drivers, such as lane change rate, while maintaining realistic control over long time horizons.Comment: 8 pages, 6 figure
    corecore