2,994 research outputs found

    Procedural aging techniques of synthetic cities and 3D scenarios

    Get PDF
    Today we live in an increasingly computerized and demanding world. A world where is constantly presented the need for, the industry of video games and movies, to find ways to create more realistic graphics environments, faster and longer with a huge level of variety. To address this need, the techniques for procedural generation appeared. These techniques were used by the computer graphics industry to create textures to simulate special effects and generate complex natural models, including mostly vegetation. Within these first techniques we can find a wide range of techniques. Subsequently, with the needs to create increasingly more complex and realistic environments, emerged the solution to adapt these algorithms, already known, to something more complex such as the generation of a road infrastructure, the generation of buildings or allowed to practically generate a world only with procedural generation and a set of rules. Although this development is increasingly felt, we noticed there is an interest in a new area, which is the procedural aging of buildings in these graphical worlds. Several authors had proposed to create new and better algorithms of procedural aging in building. These authors when approaching this subject, tend to follow a very unique and specific way, creating an algorithm capable of playing a unique phenomenon of aging. Thus, identified this gap in the literature, it was decided to seize this opportunity and present and develop a procedural aging algorithm applied to buildings that is capable of reproduce different aging phenomena, and that consumes low computational resources being capable of be applied to a huge 3D scenario.Hoje em dia vivemos num mundo cada vez mais computorizado e exigente. Um mundo onde cada vez mais está presente a necessidade de a industria dos jogos de vídeo e dos filmes arranjar maneiras de criar ambientes gráficos mais realistas, mais rapidamente e já com um nível de variedade grande. Para colmatar esta necessidade surgiu então as técnicas de geração procedural. Estas técnicas aliaram-se á industria de computação gráfica para criar texturas naturais, simular efeitos especiais e gerar modelos naturais complexos, incluindo maioritariamente vegetação. Dentro destas primeiras técnicas podemos encontrar as fractais, L-system e Perlin Noise, entre outros. Posteriormente, com a necessidades de criar cada vez mais ambientes mais complexos, surgiu a solução de adaptar estes algoritmos já conhecidos para algo mais complexo, como a geração de uma estrutura rodoviária, ou como a geração de edifícios podendo assim praticamente gerar um mundo inteiro somente com a geração procedural e um conjunto de regras. Apesar de esta evolução ser cada vez mais sentida, notou-se um crescente interesse num tema em partcular, sendo essa, o envelhecimento procedural dos edifícios nestes mundos gráficos. Vários autores até então tinham-se proposto a criar novos e cada vez melhores algoritmos de envelhecimento procedural dos edifícios. Estes autores ao abordar este tema, tendem em seguir um caminho muito singular e especifico, criando um algoritmo capaz de reproduzir um unico fenomeno de envelhecimento. Assim, identificada esta lacuna na literatura, decidiu-se agarrar esta oportunidade e apresentar e desenvolver um algoritmo de envelhecimento procedural aplicado aos edifícios que é capaz de reproduzir diferentes fenomenos de envelhecimento, e que consome poucos recursos computacionais sendo capaz de ser aplicado a um grande cenário 3D

    Weathering of stone-built heritage: A lens through which to read the Anthropocene

    Get PDF
    This paper discusses how the study of stone-built heritage decay is relevant in the context of the Anthropocene by raising the complex two-way interplay between stone and society. Natural and built stone heritage is an asset that is vulnerable to present and future climate change. Especially in the context of built heritage, stone can also be conceptualized as a “large scale laboratory” in which the evolution of weathering, and thus past exposure conditions, can be studied (analogous to physical landscape studies). This concept of built heritage as a ‘recorder’ of past environmental evolution is found from the very first moments of the development of Earth sciences as a formal discipline. The ideas reviewed and presented in the paper show how stone surfaces may be used to “read” background environmental changes, trends in pollution and even catastrophic events, such as fire. Stone surfaces teach us both about the past (since human interactions with stone began and they intensified through history) and about the nature of weathering. Understanding how past environmental changes have left a trace in stone allow us to use stone as a means to predict potential impacts of future change. Such understanding may be used to inform conservation management of our irreplaceable stone-built heritage assets, as well as to plan for future climate impacts on such assets.Peer reviewe

    Effect of Climate Change on Built Heritage

    Get PDF

    A case study of renaissance wall paintings in Granada (Spain): historical–artistic analysis, materials characterization, and state of conservation

    Get PDF
    The research carried out on the wall paintings of Hernán Pérez del Pulgar’s Palace chapel in Granada (Spain) was aimed at determining its historical–artistic, stylistic, technical, and compositional aspects. For this, a 16th century frieze and an 18th century pendentive were studied. The mineralogical, chemical, and textural characterization of the constituent materials and the study of the state of conservation of the paintings have helped to determine the pictorial technique used, identify the nature of the salts present in the paintings, and other pathologies including a dormant fungal attack. To this end, optical microscopy (OM), X-ray diffraction (XRD), Field emission scanning electron microscopy with microanalysis (FESEM-EDS), and micro-Raman spectroscopy (MRS) were used. The information obtained helps clarify important aspects of the painting technique used, laying a basis to ensure effective and suitable conservation and restoration measures on the paintings that will ensure their durability over time.AERIMPACT | Ref. CGL2012-30729EXPOAIR | Ref. P12-FQM-1889Ministerio de Ciencia e Innovación | Ref. PID2020-119838RA-I00Grupo de Investigación de Andalucía | Ref. RNM-17
    corecore