145 research outputs found

    An incremental prototyping methodology for distributed systems based on formal specifications

    Get PDF
    This thesis presents a new incremental prototyping methodology for formally specified distributed systems. The objective of this methodology is to fill the gap which currently exists between the phase where a specification is simulated, generally using some sequential logical inference tool, and the phase where the modeled system has a reliable, efficient and maintainable distributed implementation in a main-stream object-oriented programming language. This objective is realized by application of a methodology we call Mixed Prototyping with Object-Orientation (in short: OOMP). This is an extension of an existing approach, namely Mixed Prototyping, that we have adapted to the object-oriented paradigm, of which we exploit the flexibility and inherent capability of modeling abstract entities. The OOMP process proceeds as follows. First, the source specifications are automatically translated into a class-based object-oriented language, thus providing a portable and high-level initial implementation. The generated class hierarchy is designed so that the developer may independently derive new sub-classes in order to make the prototype more efficient or to add functionalities that could not be specified with the given formalism. This prototyping process is performed incrementally in order to safely validate the modifications against the semantics of the specification. The resulting prototype can finally be considered as the end-user implementation of the specified software. The originality of our approach is that we exploit object-oriented programming techniques in the implementation of formal specifications in order to gain flexibility in the development process. Simultaneously, the object paradigm gives the means to harness this newly acquired freedom by allowing automatic generation of test routines which verify the conformance of the hand-written code with respect to the specifications. We demonstrate the generality of our prototyping scheme by applying it to a distributed collaborative diary program within the frame of CO-OPN (Concurrent Object-Oriented Petri Nets), a very powerful specification formalism which allows expressing concurrent and non-deterministic behaviours, and which provides structuring facilities such as modularity, encapsulation and genericity. An important effort has also been accomplished in the development or adaptation of distributed algorithms for cooperative symbolic resolution. These algorithms are used in the run-time support of the generated CO-OPN prototypes

    Towards the Formal Verification of Model Transformations: An Application to Kermeta

    Get PDF
    Model-Driven Engineering (MDE) is becoming a popular engineering methodology for developing large-scale software applications, using models and transformations as primary principles. MDE is now being successfully applied to domain-specific languages (DSLs), which target a narrow subject domain like process management, telecommunication, product lines, smartphone applications among others, providing experts high-level and intuitive notations very close to their problem domain. More recently, MDE has been applied to safety-critical applications, where failure may have dramatic consequences, either in terms of economic, ecologic or human losses. These recent application domains call for more robust and more practical approaches for ensuring the correctness of models and model transformations. Testing is the most common technique used in MDE for ensuring the correctness of model transformations, a recurrent, yet unsolved problem in MDE. But testing suffers from the so-called coverage problem, which is unacceptable when safety is at stake. Rather, exhaustive coverage is required in this application domain, which means that transformation designers need to use formal analysis methods and tools to meet this requirement. Unfortunately, two factors seem to limit the use of such methods in an engineer’s daily life. First, a methodological factor, because MDE engineers rarely possess the effective knowledge for deploying formal analysis techniques in their daily life developments. Second, a practical factor, because DSLs do not necessarily have a formal explicit semantics, which is a necessary enabler for exhaustive analysis. In this thesis, we contribute to the problem of formal analysis of model transformations regarding each perspective. On the conceptual side, we propose a methodological framework for engineering verified model transformations based on current best practices. For that purpose, we identify three important dimensions: (i) the transformation being built; (ii) the properties of interest ensuring the transformation’s correctness; and finally, (iii) the verification technique that allows proving these properties with minimal effort. Finding which techniques are better suited for which kind of properties is the concern of the Computer-Aided Verification community. Consequently in this thesis, we focus on studying the relationship between transformations and properties. Our methodological framework introduces two novel notions. A transformation intent gathers all transformations sharing the same purpose, abstracting from the way the transformation is expressed. A property class captures under the same denomination all properties sharing the same form, abstracting away from their underlying property languages. The framework consists of mapping each intent with its characteristic set of property classes, meaning that for proving the correctness of a particular transformation obeying this intent, one has to prove properties of these specific classes. We illustrate the use and utility of our framework through the detailed description of five common intents in MDE, and their application to a case study drawn from the automative software domain, consisting of a chain of more than thirty transformations. On a more practical side, we study the problem of verifying DSLs whose behaviour is expressed with Kermeta. Kermeta is an object-oriented transformation framework aligned with Object Management Group standard specification MOF (Meta-Object Facility). It can be used for defining metamodels and models, as well as their behaviour. Kermeta lacks a formal semantics: we first specify such a semantics, and then choose an appropriate verification domain for handling the analysis one is interested in. Since the semantics is defined at the level of Kermeta’s transformation language itself, our work presents two interesting features: first, any DSL whose behaviour is defined using Kermeta (more precisely, any transformation defined with Kermeta) enjoys a de facto formal underground for free; second, it is easier to define appropriate abstractions for targeting specific analysis for this full-fledged semantics than defining specific semantics for each possible kind of analysis. To illustrate this point, we have selected Maude, a powerful rewriting system based on algebraic specifications equipped with model-checking and theorem-proving capabilities. Maude was chosen because its underlying formalism is close to the mathematical tools we use for specifying the formal semantics, reducing the implementation gap and consequently limiting the possible implementation mistakes. We validate our approach by illustrating behavioural properties of small, yet representative DSLs from the literature

    Get rid of inline assembly through verification-oriented lifting

    Full text link
    Formal methods for software development have made great strides in the last two decades, to the point that their application in safety-critical embedded software is an undeniable success. Their extension to non-critical software is one of the notable forthcoming challenges. For example, C programmers regularly use inline assembly for low-level optimizations and system primitives. This usually results in driving state-of-the-art formal analyzers developed for C ineffective. We thus propose TInA, an automated, generic, trustable and verification-oriented lifting technique turning inline assembly into semantically equivalent C code, in order to take advantage of existing C analyzers. Extensive experiments on real-world C code with inline assembly (including GMP and ffmpeg) show the feasibility and benefits of TInA

    Hidden Type Variables and Conditional Extension for More Expressive Generic Programs

    Full text link
    Generic object-oriented programming languages combine parametric polymorphism and nominal subtype polymorphism, thereby providing better data abstraction, greater code reuse, and fewer run-time errors. However, most generic object-oriented languages provide a straightforward combination of the two kinds of polymorphism, which prevents the expression of advanced type relationships. Furthermore, most generic object-oriented languages have a type-erasure semantics: instantiations of type parameters are not available at run time, and thus may not be used by type-dependent operations. This dissertation shows that two features, which allow the expression of many advanced type relationships, can be added to a generic object-oriented programming language without type erasure: 1. type variables that are not parameters of the class that declares them, and 2. extension that is dependent on the satisfiability of one or more constraints. We refer to the first feature as hidden type variables and the second feature as conditional extension. Hidden type variables allow: covariance and contravariance without variance annotations or special type arguments such as wildcards; a single type to extend, and inherit methods from, infinitely many instantiations of another type; a limited capacity to augment the set of superclasses after that class is defined; and the omission of redundant type arguments. Conditional extension allows the properties of a collection type to be dependent on the properties of its element type. This dissertation describes the semantics and implementation of hidden type variables and conditional extension. A sound type system is presented. In addition, a sound and terminating type checking algorithm is presented. Although designed for the Fortress programming language, hidden type variables and conditional extension can be incorporated into other generic object-oriented languages. Many of the same problems would arise, and solutions analogous to those we present would apply

    The synchronous languages 12 years later

    Full text link

    Reducing the Cost of Precise Types

    Get PDF
    Programs involving precise types enforce more properties via type checking, but precise types also prevent the reuse of functions throughout a program since no single precise type is used throughout a large program. My work is a step toward eliminating the underlying dilemma regarding type precision versus function reuse. It culminates in a novel traversal operator that recovers the reuse by automating most of each conversion between "similar" precise types, for a notion of similarity that I characterize in both the intuitive and technical senses. The benefits of my techniques are clear in side-by-side comparisons; in particular, I apply my techniques to two definitions of lambda-lifting. I present and implement my techniques in the Haskell programming language, but the fundamental ideas are applicable to any statically- and strongly-typed programming functional language with algebraic data types

    ALPACAS: A Language for Parametric Assessment of Critical Architecture Safety

    Get PDF
    This paper introduces Alpacas, a domain-specific language and algorithms aimed at architecture modeling and safety assessment for critical systems. It allows to study the effects of random and systematic faults on complex critical systems and their reliability. The underlying semantic framework of the language is Stochastic Guarded Transition Systems, for which Alpacas provides a feature-rich declarative modeling language and algorithms for symbolic analysis and Monte-Carlo simulation, allowing to compute safety indicators such as minimal cutsets and reliability. Built as a domain-specific language deeply embedded in Scala 3, Alpacas offers generic modeling capabilities and type-safety unparalleled in other existing safety assessment frameworks. This improved expressive power allows to address complex system modeling tasks, such as formalizing the architectural design space of a critical function, and exploring it to identify the most reliable variant. The features and algorithms of Alpacas are illustrated on a case study of a thrust allocation and power dispatch system for an electric vertical takeoff and landing aircraft
    corecore