131 research outputs found

    Thirty years of heterogeneous vehicle routing

    No full text
    It has been around thirty years since the heterogeneous vehicle routing problem was introduced, and significant progress has since been made on this problem and its variants. The aim of this survey paper is to classify and review the literature on heterogeneous vehicle routing problems. The paper also presents a comparative analysis of the metaheuristic algorithms that have been proposed for these problems

    Optimization for Decision Making II

    Get PDF
    In the current context of the electronic governance of society, both administrations and citizens are demanding the greater participation of all the actors involved in the decision-making process relative to the governance of society. This book presents collective works published in the recent Special Issue (SI) entitled “Optimization for Decision Making II”. These works give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and the application of optimization techniques to support decisions are particularly complex and a wide range of optimization techniques and methodologies are used to minimize risks, improve quality in making decisions or, in general, to solve problems. In addition, a sensitivity or robustness analysis should be done to validate/analyze the influence of uncertainty regarding decision-making. This book brings together a collection of inter-/multi-disciplinary works applied to the optimization of decision making in a coherent manner

    Heuristic Solution Approaches to the Double TSP with Multiple Stacks

    Get PDF
    This paper introduces the Double Travelling Salesman Problem with Multiple Stacks and presents three different metaheuristic approaches to its solution. The Double TSP with Multiple Stacks is concerned with determining the shortest route performing pickups and deliveries in two separated networks (one for pickups and one for deliveries) using only one container. Repacking is not allowed, instead each item can be positioned in one of several rows in the container, such that each row can be considered a LIFO stack, but no mutual constraints exist between the rows. Two different neighbourhood structures are developed for the problem and used with each of the heuristics. Finally some computational results are given along with lower bounds on the objective value.

    Hybrid Genetic Algorithms and Simulated Annealing for Multi-trip Vehicle Routing Problem with Time Windows

    Get PDF
    Vehicle routing problem with time windows (VRPTW) is one of NP-hard problem. Multi-trip is approach to solve the VRPTW that looking trip scheduling for gets best result. Even though there are various algorithms for the problem, there is opportunity to improve the existing algorithms in order gaining a better result. In this research, genetic algoritm is hybridized with simulated annealing algoritm to solve the problem. Genetic algoritm is employed to explore global search area and simulated annealing is employed to exploit local search area. Four combination types of genetic algorithm and simulated annealing (GA-SA) are tested to get the best solution. The computational experiment shows that GA-SA1 and GA-SA4 can produced the most optimal fitness average values with each value was 1.0888 and 1.0887. However GA-SA4 can found the best fitness chromosome faster than GA-SA1

    A Multi-Objective Genetic Algorithm for the Vehicle Routing with Time Windows and Loading Problem

    Get PDF
    This work presents the Vehicle Routing with Time Windows and Loading Problem (VRTWLP) as a multi-objective optimization problem, implemented within a Genetic Algorithm. Specifically, the three dimensions of the problem to be optimized – the number of vehicles, the total travel distance and volume utilization – are considered to be separated dimensions of a multi-objective space. The quality of the solution obtained using this approach is evaluated and compared with results of other heuristic approaches previously developed by the author. The most significant contribution of this work is our interpretation of VRTWLP as a Multi-objective Optimization Problem

    An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems

    Get PDF
    Bat algorithm is a population metaheuristic proposed in 2010 which is based on the echolocation or bio-sonar characteristics of microbats. Since its first implementation, the bat algorithm has been used in a wide range of fields. In this paper, we present a discrete version of the bat algorithm to solve the well-known symmetric and asymmetric traveling salesman problems. In addition, we propose an improvement in the basic structure of the classic bat algorithm. To prove that our proposal is a promising approximation method, we have compared its performance in 37 instances with the results obtained by five different techniques: evolutionary simulated annealing, genetic algorithm, an island based distributed genetic algorithm, a discrete firefly algorithm and an imperialist competitive algorithm. In order to obtain fair and rigorous comparisons, we have conducted three different statistical tests along the paper: the Student's tt-test, the Holm's test, and the Friedman test. We have also compared the convergence behaviour shown by our proposal with the ones shown by the evolutionary simulated annealing, and the discrete firefly algorithm. The experimentation carried out in this study has shown that the presented improved bat algorithm outperforms significantly all the other alternatives in most of the cases

    The double traveling salesman problem with partial last-in-first-out loading constraints

    Get PDF
    In this paper, we introduce the double traveling salesman problem with partial last-in-first-out loading constraints (DTSPPL). It is a pickup-and-delivery single-vehicle routing problem, where all pickup operations must be performed before any delivery operation because the pickup-and-delivery areas are geographically separated. The vehicle collects items in the pickup area and loads them into its container, a horizontal stack. After performing all pickup operations, the vehicle begins delivering the items in the delivery area. Loading and unloading operations must obey a partial last-in-first-out (LIFO) policy, that is, a version of the LIFO policy that may be violated within a given reloading depth. The objective of the DTSPPL is to minimize the total cost, which involves the total distance traveled by the vehicle and the number of items that are unloaded and then reloaded due to violations of the standard LIFO policy. We formally describe the DTSPPL through two integer linear programming (ILP) formulations and propose a heuristic algorithm based on the biased random-key genetic algorithm (BRKGA) to find high-quality solutions. The performance of the proposed solution approaches is assessed over a broad set of instances. Computational results have shown that both ILP formulations have been able to solve only the smaller instances, whereas the BRKGA obtained good-quality solutions for almost all instances, requiring short computational times

    An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems

    Get PDF
    Bat algorithm is a population metaheuristic proposed in 2010 which is based on the echolocation or bio-sonar characteristics of microbats. Since its first implementation, the bat algorithm has been used in a wide range of fields. In this paper, we present a discrete version of the bat algorithm to solve the well-known symmetric and asymmetric traveling salesman problems. In addition, we propose an improvement in the basic structure of the classic bat algorithm. To prove that our proposal is a promising approximation method, we have compared its performance in 37 instances with the results obtained by five different techniques: evolutionary simulated annealing, genetic algorithm, an island based distributed genetic algorithm, a discrete firefly algorithm and an imperialist competitive algorithm. In order to obtain fair and rigorous comparisons, we have conducted three different statistical tests along the paper: the Student's tt-test, the Holm's test, and the Friedman test. We have also compared the convergence behaviour shown by our proposal with the ones shown by the evolutionary simulated annealing, and the discrete firefly algorithm. The experimentation carried out in this study has shown that the presented improved bat algorithm outperforms significantly all the other alternatives in most of the cases
    • …
    corecore