585 research outputs found

    application to Martian dust tori and Enceladus dust plumes

    Get PDF
    Our Solar system contains a large amount of dust, containing valuable information about our close cosmic environment. If created in a planet's system, the particles stay predominantly in its vicinity and can form extended dust envelopes, tori or rings around them. A fascinating example of these complexes are Saturnian rings containing a wide range of particles sizes from house-size objects in the main rings up to micron-sized grains constituting the E ring. Other example are ring systems in general, containing a large fraction of dust or also the putative dust-tori surrounding the planet Mars. The dynamical life'' of such circumplanetary dust populations is the main subject of our study...thesi

    How the Universe got its Spots

    Get PDF
    The universe displays a three-dimensional pattern of hot and cold spots in the radiation remnant from the big bang. The global geometry of the universe can be revealed in the spatial distribution of these spots. In a topologically compact universe, distinctive patterns are especially prominent in spatial correlations of the radiation temperature. Whereas these patterns are usually washed out in statistical averages, we propose a scheme which uses the universe's spots to observe global geometry in a manner analogous to the use of multiple images of a gravitationally lensed quasar to study the geometry of the lens. To demonstrate how the geometry of space forms patterns in observations of the microwave sky, we develop a simple real-space approximation to estimate temperature correlations for any set of cosmological parameters and any global geometry. We present correlated spheres which clearly show geometric pattern formation for compact flat universes as well as for the compact negatively curved space introduced by Weeks and another discovered by Best. These examples illustrate how future satellite-based observations of the microwave background can determine the full geometry of the universe.Comment: 16 pages, 26 figure

    Fluctuations and differential contraction during regeneration of Hydra vulgaris tissue toroids

    Full text link
    We studied regenerating bilayered tissue toroids dissected from Hydra vulgaris polyps and relate our macroscopic observations to the dynamics of force-generating mesoscopic cytoskeletal structures. Tissue fragments undergo a specific toroid-spheroid folding process leading to complete regeneration towards a new organism. The time scale of folding is too fast for biochemical signalling or morphogenetic gradients which forced us to assume purely mechanical self-organization. The initial pattern selection dynamics was studied by embedding toroids into hydro-gels allowing us to observe the deformation modes over longer periods of time. We found increasing mechanical fluctuations which break the toroidal symmetry and discuss the evolution of their power spectra for various gel stiffnesses. Our observations are related to single cell studies which explain the mechanical feasibility of the folding process. In addition, we observed switching of cells from a tissue bound to a migrating state after folding failure as well as in tissue injury. We found a supra-cellular actin ring assembled along the toroid's inner edge. Its contraction can lead to the observed folding dynamics as we could confirm by finite element simulations. This actin ring in the inner cell layer is assembled by myosin- driven length fluctuations of supra-cellular {\alpha}-actin structures (myonemes) in the outer cell-layer.Comment: 19 pages and 8 figures, submitted to New Journal of Physic

    On Lagrangian and vortex-surface fields for flows with Taylor–Green and Kida–Pelz initial conditions

    Get PDF
    For a strictly inviscid barotropic flow with conservative body forces, the Helmholtz vorticity theorem shows that material or Lagrangian surfaces which are vortex surfaces at time t = 0 remain so for t > 0. In this study, a systematic methodology is developed for constructing smooth scalar fields φ(x, y, z, t = 0) for Taylor–Green and Kida–Pelz velocity fields, which, at t = 0, satisfy ω·∇φ = 0. We refer to such fields as vortex-surface fields. Then, for some constant C, iso-surfaces φ = C define vortex surfaces. It is shown that, given the vorticity, our definition of a vortex-surface field admits non-uniqueness, and this is presently resolved numerically using an optimization approach. Additionally, relations between vortex-surface fields and the classical Clebsch representation are discussed for flows with zero helicity. Equations describing the evolution of vortex-surface fields are then obtained for both inviscid and viscous incompressible flows. Both uniqueness and the distinction separating the evolution of vortex-surface fields and Lagrangian fields are discussed. By tracking φ as a Lagrangian field in slightly viscous flows, we show that the well-defined evolution of Lagrangian surfaces that are initially vortex surfaces can be a good approximation to vortex surfaces at later times prior to vortex reconnection. In the evolution of such Lagrangian fields, we observe that initially blob-like vortex surfaces are progressively stretched to sheet-like shapes so that neighbouring portions approach each other, with subsequent rolling up of structures near the interface, which reveals more information on dynamics than the iso-surfaces of vorticity magnitude. The non-local geometry in the evolution is quantified by two differential geometry properties. Rolled-up local shapes are found in the Lagrangian structures that were initially vortex surfaces close to the time of vortex reconnection. It is hypothesized that this is related to the formation of the very high vorticity regions

    Dynamics of Barred Galaxies

    Get PDF
    Some 30% of disc galaxies have a pronounced central bar feature in the disc plane and many more have weaker features of a similar kind. Kinematic data indicate that the bar constitutes a major non-axisymmetric component of the mass distribution and that the bar pattern tumbles rapidly about the axis normal to the disc plane. The observed motions are consistent with material within the bar streaming along highly elongated orbits aligned with the rotating major axis. A barred galaxy may also contain a spheroidal bulge at its centre, spirals in the outer disc and, less commonly, other features such as a ring or lens. Mild asymmetries in both the light and kinematics are quite common. We review the main problems presented by these complicated dynamical systems and summarize the effort so far made towards their solution, emphasizing results which appear secure. (Truncated)Comment: This old review appeared in 1993. Plain tex with macro file. 82 pages 18 figures. A pdf version with figures at full resolution (3.24MB) is available at http://www.physics.rutgers.edu/~sellwood/bar_review.pd

    Reservoir computing quality : connectivity and topology

    Get PDF
    We explore the effect of connectivity and topology on the dynamical behaviour of Reservoir Computers. At present, considerable effort is taken to design and hand-craft physical reservoir computers. Both structure and physical complexity are often pivotal to task performance, however, assessing their overall importance is challenging. Using a recently developed framework, we evaluate and compare the dynamical freedom (referring to quality) of neural network structures, as an analogy for physical systems. The results quantify how structure affects the behavioural range of networks. It demonstrates how high quality reached by more complex structures is often also achievable in simpler structures with greater network size. Alternatively, quality is often improved in smaller networks by adding greater connection complexity. This work demonstrates the benefits of using dynamical behaviour to assess the quality of computing substrates, rather than evaluation through benchmark tasks that often provide a narrow and biased insight into the computing quality of physical systems

    CFD analysis of industrial multi-staged stirred vessels

    Get PDF
    This paper presents tools for analysis of CFD results adapted for flows in multi-stage stirred vessels through out two industrial cases. Those tanks fitted with double-flow impellers are used first to cool down highly viscous resins and subsequently for indirect emulsification. Since the simulation of these processes in their whole complexity would be unrealistic, it considers single-phase flows without heat transfer. The result analysis in order to prove that the mixing and the circulation are effective is not usual; in these cases, the circulation and impeller numbers are not adapted. The average axial flow numbers are relevant of the circulation in the whole tank and of the connection between the flows produced by the propellers in the given configuration. The velocity profiles give relevant results, but are not sufficient whereas the particle tracking validates that the propellers do not work together in one case and do work together in a second one

    Quantitative performance evaluation of SCI memory hierarchies

    Get PDF
    corecore