550 research outputs found

    Joint QoS multicast routing and channel assignment in multiradio multichannel wireless mesh networks using intelligent computational methods

    Get PDF
    Copyright @ 2010 Elsevier B.V. All rights reserved.In this paper, the quality of service multicast routing and channel assignment (QoS-MRCA) problem is investigated. It is proved to be a NP-hard problem. Previous work separates the multicast tree construction from the channel assignment. Therefore they bear severe drawback, that is, channel assignment cannot work well with the determined multicast tree. In this paper, we integrate them together and solve it by intelligent computational methods. First, we develop a unified framework which consists of the problem formulation, the solution representation, the fitness function, and the channel assignment algorithm. Then, we propose three separate algorithms based on three representative intelligent computational methods (i.e., genetic algorithm, simulated annealing, and tabu search). These three algorithms aim to search minimum-interference multicast trees which also satisfy the end-to-end delay constraint and optimize the usage of the scarce radio network resource in wireless mesh networks. To achieve this goal, the optimization techniques based on state of the art genetic algorithm and the techniques to control the annealing process and the tabu search procedure are well developed separately. Simulation results show that the proposed three intelligent computational methods based multicast algorithms all achieve better performance in terms of both the total channel conflict and the tree cost than those comparative references.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Joint multicast routing and channel assignment in multiradio multichannel wireless mesh networks using simulated annealing

    Get PDF
    This is the post-print version of the article - Copyright @ 2008 Springer-VerlagThis paper proposes a simulated annealing (SA) algorithm based optimization approach to search a minimum-interference multicast tree which satisfies the end-to-end delay constraint and optimizes the usage of the scarce radio network resource in wireless mesh networks. In the proposed SA multicast algorithm, the path-oriented encoding method is adopted and each candidate solution is represented by a tree data structure (i.e., a set of paths). Since we anticipate the multicast trees on which the minimum-interference channel assignment can be produced, a fitness function that returns the total channel conflict is devised. The techniques for controlling the annealing process are well developed. A simple yet effective channel assignment algorithm is proposed to reduce the channel conflict. Simulation results show that the proposed SA based multicast algorithm can produce the multicast trees which have better performance in terms of both the total channel conflict and the tree cost than that of a well known multicast algorithm in wireless mesh networks.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research

    Genetic local search for multicast routing with pre-processing by logarithmic simulated annealing

    Get PDF
    Over the past few years, several local search algorithms have been proposed for various problems related to multicast routing in the off-line mode. We describe a population-based search algorithm for cost minimisation of multicast routing. The algorithm utilises the partially mixed crossover operation (PMX) under the elitist model: for each element of the current population, the local search is based upon the results of a landscape analysis that is executed only once in a pre-processing step; the best solution found so far is always part of the population. The aim of the landscape analysis is to estimate the depth of the deepest local minima in the landscape generated by the routing tasks and the objective function. The analysis employs simulated annealing with a logarithmic cooling schedule (logarithmic simulated annealing—LSA). The local search then performs alternating sequences of descending and ascending steps for each individual of the population, where the length of a sequence with uniform direction is controlled by the estimated value of the maximum depth of local minima. We present results from computational experiments on three different routing tasks, and we provide experimental evidence that our genetic local search procedure that combines LSA and PMX performs better than algorithms using either LSA or PMX only

    QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms

    Get PDF
    Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017

    Efficient energy, cost reduction, and QoS based routing protocol for wireless sensor networks

    Get PDF
    Recent developments and widespread in wireless sensor network have led to many routing protocols, many of these protocols consider the efficiency of energy as the ultimate factor to maximize the WSN lifetime. The quality of Service (QoS) requirements for different applications of wireless sensor networks has posed additional challenges. Imaging and data transmission needs both QoS aware routing and energy to ensure the efficient use of sensors. In this paper, we propose an Efficient, Energy-Aware, Least Cost, (ECQSR) quality of service routing protocol for sensor networks which can run efficiently with best-effort traffic processing. The protocol aims to maximize the lifetime of the network out of balancing energy consumption across multiple nodes, by using the concept of service differentiation, finding lower cost by finding the shortest path using nearest neighbor algorithm (NN), also put certain constraints on the delay of the path for real-time data from where link cost that captures energy nodes reserve, energy of the transmission, error rate and other parameters. The results show that the proposed protocol improves the network lifetime and low power consumption
    corecore