452 research outputs found

    An information-based neural approach to generic constraint satisfaction

    Get PDF
    AbstractA novel artificial neural network heuristic (INN) for general constraint satisfaction problems is presented, extending a recently suggested method restricted to boolean variables. In contrast to conventional ANN methods, it employs a particular type of non-polynomial cost function, based on the information balance between variables and constraints in a mean-field setting. Implemented as an annealing algorithm, the method is numerically explored on a testbed of Graph Coloring problems. The performance is comparable to that of dedicated heuristics, and clearly superior to that of conventional mean-field annealing

    Stochastic local search: a state-of-the-art review

    Get PDF
    The main objective of this paper is to provide a state-of-the-art review, analyze and discuss stochastic local search techniques used for solving hard combinatorial problems. It begins with a short introduction, motivation and some basic notation on combinatorial problems, search paradigms and other relevant features of searching techniques as needed for background. In the following a brief overview of the stochastic local search methods along with an analysis of the state-of-the-art stochastic local search algorithms is given. Finally, the last part of the paper present and discuss some of the most latest trends in application of stochastic local search algorithms in machine learning, data mining and some other areas of science and engineering. We conclude with a discussion on capabilities and limitations of stochastic local search algorithms

    An event-based architecture for solving constraint satisfaction problems

    Full text link
    Constraint satisfaction problems (CSPs) are typically solved using conventional von Neumann computing architectures. However, these architectures do not reflect the distributed nature of many of these problems and are thus ill-suited to solving them. In this paper we present a hybrid analog/digital hardware architecture specifically designed to solve such problems. We cast CSPs as networks of stereotyped multi-stable oscillatory elements that communicate using digital pulses, or events. The oscillatory elements are implemented using analog non-stochastic circuits. The non-repeating phase relations among the oscillatory elements drive the exploration of the solution space. We show that this hardware architecture can yield state-of-the-art performance on a number of CSPs under reasonable assumptions on the implementation. We present measurements from a prototype electronic chip to demonstrate that a physical implementation of the proposed architecture is robust to practical non-idealities and to validate the theory proposed.Comment: First two authors contributed equally to this wor

    Unveiling the Limits of Learned Local Search Heuristics: Are You the Mightiest of the Meek?

    Full text link
    In recent years, combining neural networks with local search heuristics has become popular in the field of combinatorial optimization. Despite its considerable computational demands, this approach has exhibited promising outcomes with minimal manual engineering. However, we have identified three critical limitations in the empirical evaluation of these integration attempts. Firstly, instances with moderate complexity and weak baselines pose a challenge in accurately evaluating the effectiveness of learning-based approaches. Secondly, the absence of an ablation study makes it difficult to quantify and attribute improvements accurately to the deep learning architecture. Lastly, the generalization of learned heuristics across diverse distributions remains underexplored. In this study, we conduct a comprehensive investigation into these identified limitations. Surprisingly, we demonstrate that a simple learned heuristic based on Tabu Search surpasses state-of-the-art (SOTA) learned heuristics in terms of performance and generalizability. Our findings challenge prevailing assumptions and open up exciting avenues for future research and innovation in combinatorial optimization

    Efficient Probabilistic Computing with Stochastic Perovskite Nickelates

    Full text link
    Probabilistic computing has emerged as a viable approach to solve hard optimization problems. Devices with inherent stochasticity can greatly simplify their implementation in electronic hardware. Here, we demonstrate intrinsic stochastic resistance switching controlled via electric fields in perovskite nickelates doped with hydrogen. The ability of hydrogen ions to reside in various metastable configurations in the lattice leads to a distribution of transport gaps. With experimentally characterized p-bits, a shared-synapse p-bit architecture demonstrates highly-parallelized and energy-efficient solutions to optimization problems such as integer factorization and Boolean-satisfiability. The results introduce perovskite nickelates as scalable potential candidates for probabilistic computing and showcase the potential of light-element dopants in next-generation correlated semiconductors
    corecore