361 research outputs found

    Surface Simplification of 3D Animation Models Using Robust Homogeneous Coordinate Transformation

    Get PDF
    The goal of 3D surface simplification is to reduce the storage cost of 3D models. A 3D animation model typically consists of several 3D models. Therefore, to ensure that animation models are realistic, numerous triangles are often required. However, animation models that have a high storage cost have a substantial computational cost. Hence, surface simplification methods are adopted to reduce the number of triangles and computational cost of 3D models. Quadric error metrics (QEM) has recently been identified as one of the most effective methods for simplifying static models. To simplify animation models by using QEM, Mohr and Gleicher summed the QEM of all frames. However, homogeneous coordinate problems cannot be considered completely by using QEM. To resolve this problem, this paper proposes a robust homogeneous coordinate transformation that improves the animation simplification method proposed by Mohr and Gleicher. In this study, the root mean square errors of the proposed method were compared with those of the method proposed by Mohr and Gleicher, and the experimental results indicated that the proposed approach can preserve more contour features than Mohr’s method can at the same simplification ratio

    Analytic simplification of animated characters

    Get PDF
    Traditionally, levels of detail (LOD) for animated characters are computed from a single pose. Later techniques refined this approach by considering a set of sample poses and evaluating a more representative error metric. A recent approach to the character animation problem, animation space, provides a framework for measuring error analytically. The work presented here uses the animation-space framework to derive two new techniques to improve the quality of LOD approximations. Firstly, we use an animation-space distance metric within a progressive mesh-based LOD scheme, giving results that are reasonable across a range of poses, without requiring that the pose space be sampled. Secondly, we simplify individual vertices by reducing the number of bones that influence them, using a constrained least-squares optimisation. This influence simplification is combined with the progressive mesh to form a single stream of simplifications. Influence simplification reduces the geometric error by up to an order of magnitude, and allows models to be simplified further than is possible with only a progressive mesh. Quantitative (geometric error metrics) and qualititative (user perceptual) experiements confirm that these new extensions provide significant improvements in quality over traditional, naĂŻve simplification; and while there is naturally some impact on the speed of the off-line simplification process, it is not prohibitive

    Radar-cross-section reduction of wind turbines. part 1.

    Full text link

    Active haptic perception in robots: a review

    Get PDF
    In the past few years a new scenario for robot-based applications has emerged. Service and mobile robots have opened new market niches. Also, new frameworks for shop-floor robot applications have been developed. In all these contexts, robots are requested to perform tasks within open-ended conditions, possibly dynamically varying. These new requirements ask also for a change of paradigm in the design of robots: on-line and safe feedback motion control becomes the core of modern robot systems. Future robots will learn autonomously, interact safely and possess qualities like self-maintenance. Attaining these features would have been relatively easy if a complete model of the environment was available, and if the robot actuators could execute motion commands perfectly relative to this model. Unfortunately, a complete world model is not available and robots have to plan and execute the tasks in the presence of environmental uncertainties which makes sensing an important component of new generation robots. For this reason, today\u2019s new generation robots are equipped with more and more sensing components, and consequently they are ready to actively deal with the high complexity of the real world. Complex sensorimotor tasks such as exploration require coordination between the motor system and the sensory feedback. For robot control purposes, sensory feedback should be adequately organized in terms of relevant features and the associated data representation. In this paper, we propose an overall functional picture linking sensing to action in closed-loop sensorimotor control of robots for touch (hands, fingers). Basic qualities of haptic perception in humans inspire the models and categories comprising the proposed classification. The objective is to provide a reasoned, principled perspective on the connections between different taxonomies used in the Robotics and human haptic literature. The specific case of active exploration is chosen to ground interesting use cases. Two reasons motivate this choice. First, in the literature on haptics, exploration has been treated only to a limited extent compared to grasping and manipulation. Second, exploration involves specific robot behaviors that exploit distributed and heterogeneous sensory data

    Doctor of Philosophy

    Get PDF
    dissertationReal-time global illumination is the next frontier in real-time rendering. In an attempt to generate realistic images, games have followed the film industry into physically based shading and will soon begin integrating global illumination techniques. Traditional methods require too much memory and too much time to compute for real-time use. With Modular and Delta Radiance Transfer we precompute a scene-independent, low-frequency basis that allows us to calculate complex indirect lighting calculations in a much lower dimensional subspace with a reduced memory footprint and real-time execution. The results are then applied as a light map on many different scenes. To improve the low frequency results, we also introduce a novel screen space ambient occlusion technique that allows us to generate a smoother result with fewer samples. These three techniques, low and high frequency used together, provide a viable indirect lighting solution that can be run in milliseconds on today's hardware, providing a useful new technique for indirect lighting in real-time graphics

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Multidisciplinary Reference Solutions for Performance-Optimized Aircraft Wings with Tailored Aerodynamic Load Distributions

    Get PDF
    Morphing wings, or wings that can change shape during flight, have the potential to substantially reduce the amount of fuel consumed by an aircraft over the course of its flight. However, the extent to which these wings can reduce fuel consumption depends on the design of the wing, including its aerodynamic efficiency and its structural layout, and how the aircraft flies, including its flight altitude and speed. Correctly predicting how these design and operational characteristics interact is critical to predicting how wing morphing may affect aircraft fuel consumption. Many computer prediction tools exist that include the effects of these interactions, but extracting the information needed to understand how the interactions work from most of these tools is very difficult. In this dissertation, some simplified models are presented that more directly reveal key information about the interplay between aerodynamics, structures, control, and the flight trajectory in the design of morphing wings. This information is used to characterize the impacts of wing morphing on aircraft efficiency

    Aeronautical engineering: A continuing bibliography with indexes (supplement 322)

    Get PDF
    This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    A linear framework for character skinning

    Get PDF
    Character animation is the process of modelling and rendering a mobile character in a virtual world. It has numerous applications both off-line, such as virtual actors in films, and real-time, such as in games and other virtual environments. There are a number of algorithms for determining the appearance of an animated character, with different trade-offs between quality, ease of control, and computational cost. We introduce a new method, animation space, which provides a good balance between the ease-of-use of very simple schemes and the quality of more complex schemes, together with excellent performance. It can also be integrated into a range of existing computer graphics algorithms. Animation space is described by a simple and elegant linear equation. Apart from making it fast and easy to implement, linearity facilitates mathematical analysis. We derive two metrics on the space of vertices (the “animation space”), which indicate the mean and maximum distances between two points on an animated character. We demonstrate the value of these metrics by applying them to the problems of parametrisation, level-of-detail (LOD) and frustum culling. These metrics provide information about the entire range of poses of an animated character, so they are able to produce better results than considering only a single pose of the character, as is commonly done. In order to compute parametrisations, it is necessary to segment the mesh into charts. We apply an existing algorithm based on greedy merging, but use a metric better suited to the problem than the one suggested by the original authors. To combine the parametrisations with level-of-detail, we require the charts to have straight edges. We explored a heuristic approach to straightening the edges produced by the automatic algorithm, but found that manual segmentation produced better results. Animation space is nevertheless beneficial in flattening the segmented charts; we use least squares conformal maps (LSCM), with the Euclidean distance metric replaced by one of our animation-space metrics. The resulting parametrisations have significantly less overall stretch than those computed based on a single pose. Similarly, we adapt appearance preserving simplification (APS), a progressive mesh-based LOD algorithm, to apply to animated characters by replacing the Euclidean metric with an animation-space metric. When using the memoryless form of APS (in which local rather than global error is considered), the use of animation space for computations reduces the geometric errors introduced by LOD decomposition, compared to simplification based on a single pose. User tests, in which users compared video clips of the two, demonstrated a statistically significant preference for the animation-space simplifications, indicating that the visual quality is better as well. While other methods exist to take multiple poses into account, they are based on a sampling of the pose space, and the computational cost scales with the number of samples used. In contrast, our method is analytic and uses samples only to gather statistics. The quality of LOD approximations by improved further by introducing a novel approach to LOD, influence simplification, in which we remove the influences of bones on vertices, and adjust the remaining influences to approximate the original vertex as closely as possible. Once again, we use an animation-space metric to determine the approximation error. By combining influence simplification with the progressive mesh structure, we can obtain further improvements in quality: for some models and at some detail levels, the error is reduced by an order of magnitude relative to a pure progressive mesh. User tests showed that for some models this significantly improves quality, while for others it makes no significant difference. Animation space is a generalisation of skeletal subspace deformation (SSD), a popular method for real-time character animation. This means that there is a large existing base of models that can immediately benefit from the modified algorithms mentioned above. Furthermore, animation space almost entirely eliminates the well-known shortcomings of SSD (the so-called “candy-wrapper” and “collapsing elbow” effects). We show that given a set of sample poses, we can fit an animation-space model to these poses by solving a linear least-squares problem. Finally, we demonstrate that animation space is suitable for real-time rendering, by implementing it, along with level-of-detail rendering, on a PC with a commodity video card. We show that although the extra degrees of freedom make the straightforward approach infeasible for complex models, it is still possible to obtain high performance; in fact, animation space requires fewer basic operations to transform a vertex position than SSD. We also consider two methods of lighting LOD-simplified models using the original normals: tangent-space normal maps, an existing method that is fast to render but does not capture dynamic structures such as wrinkles; and tangent maps, a novel approach that encodes animation-space tangent vectors into textures, and which captures dynamic structures. We compare the methods both for performance and quality, and find that tangent-space normal maps are at least an order of magnitude faster, while user tests failed to show any perceived difference in quality between them

    Proceedings of the 9th Arab Society for Computer Aided Architectural Design (ASCAAD) international conference 2021 (ASCAAD 2021): architecture in the age of disruptive technologies: transformation and challenges.

    Get PDF
    The ASCAAD 2021 conference theme is Architecture in the age of disruptive technologies: transformation and challenges. The theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration
    • …
    corecore