49 research outputs found

    On the General Chain Pair Simplification Problem

    Get PDF
    The Chain Pair Simplification problem (CPS) was posed by Bereg et al. who were motivated by the problem of efficiently computing and visualizing the structural resemblance between a pair of protein backbones. In this problem, given two polygonal chains of lengths n and m, the goal is to simplify both of them simultaneously, so that the lengths of the resulting simplifications as well as the discrete Frechet distance between them are bounded. When the vertices of the simplifications are arbitrary (i.e., not necessarily from the original chains), the problem is called General CPS (GCPS). In this paper we consider for the first time the complexity of GCPS under both the discrete Frechet distance (GCPS-3F) and the Hausdorff distance (GCPS-2H). (In the former version, the quality of the two simplifications is measured by the discrete Fr\u27echet distance, and in the latter version it is measured by the Hausdorff distance.) We prove that GCPS-3F is polynomially solvable, by presenting an widetilde-O((n+m)^6 min{n,m}) time algorithm for the corresponding minimization problem. We also present an O((n+m)^4) 2-approximation algorithm for the problem. On the other hand, we show that GCPS-2H is NP-complete, and present an approximation algorithm for the problem

    Approximating (k,â„“)(k,\ell)-center clustering for curves

    Get PDF
    The Euclidean kk-center problem is a classical problem that has been extensively studied in computer science. Given a set G\mathcal{G} of nn points in Euclidean space, the problem is to determine a set C\mathcal{C} of kk centers (not necessarily part of G\mathcal{G}) such that the maximum distance between a point in G\mathcal{G} and its nearest neighbor in C\mathcal{C} is minimized. In this paper we study the corresponding (k,ℓ)(k,\ell)-center problem for polygonal curves under the Fr\'echet distance, that is, given a set G\mathcal{G} of nn polygonal curves in Rd\mathbb{R}^d, each of complexity mm, determine a set C\mathcal{C} of kk polygonal curves in Rd\mathbb{R}^d, each of complexity ℓ\ell, such that the maximum Fr\'echet distance of a curve in G\mathcal{G} to its closest curve in C\mathcal{C} is minimized. In this paper, we substantially extend and improve the known approximation bounds for curves in dimension 22 and higher. We show that, if ℓ\ell is part of the input, then there is no polynomial-time approximation scheme unless P=NP\mathsf{P}=\mathsf{NP}. Our constructions yield different bounds for one and two-dimensional curves and the discrete and continuous Fr\'echet distance. In the case of the discrete Fr\'echet distance on two-dimensional curves, we show hardness of approximation within a factor close to 2.5982.598. This result also holds when k=1k=1, and the NP\mathsf{NP}-hardness extends to the case that ℓ=∞\ell=\infty, i.e., for the problem of computing the minimum-enclosing ball under the Fr\'echet distance. Finally, we observe that a careful adaptation of Gonzalez' algorithm in combination with a curve simplification yields a 33-approximation in any dimension, provided that an optimal simplification can be computed exactly. We conclude that our approximation bounds are close to being tight.Comment: 24 pages; results on minimum-enclosing ball added, additional author added, general revisio

    Approximate Nearest Neighbor for Curves - Simple, Efficient, and Deterministic

    Get PDF

    Computational Approaches to Simulation and Analysis of Large Conformational Transitions in Proteins

    Get PDF
    abstract: In a typical living cell, millions to billions of proteins—nanomachines that fluctuate and cycle among many conformational states—convert available free energy into mechanochemical work. A fundamental goal of biophysics is to ascertain how 3D protein structures encode specific functions, such as catalyzing chemical reactions or transporting nutrients into a cell. Protein dynamics span femtosecond timescales (i.e., covalent bond oscillations) to large conformational transition timescales in, and beyond, the millisecond regime (e.g., glucose transport across a phospholipid bilayer). Actual transition events are fast but rare, occurring orders of magnitude faster than typical metastable equilibrium waiting times. Equilibrium molecular dynamics (EqMD) can capture atomistic detail and solute-solvent interactions, but even microseconds of sampling attainable nowadays still falls orders of magnitude short of transition timescales, especially for large systems, rendering observations of such "rare events" difficult or effectively impossible. Advanced path-sampling methods exploit reduced physical models or biasing to produce plausible transitions while balancing accuracy and efficiency, but quantifying their accuracy relative to other numerical and experimental data has been challenging. Indeed, new horizons in elucidating protein function necessitate that present methodologies be revised to more seamlessly and quantitatively integrate a spectrum of methods, both numerical and experimental. In this dissertation, experimental and computational methods are put into perspective using the enzyme adenylate kinase (AdK) as an illustrative example. We introduce Path Similarity Analysis (PSA)—an integrative computational framework developed to quantify transition path similarity. PSA not only reliably distinguished AdK transitions by the originating method, but also traced pathway differences between two methods back to charge-charge interactions (neglected by the stereochemical model, but not the all-atom force field) in several conserved salt bridges. Cryo-electron microscopy maps of the transporter Bor1p are directly incorporated into EqMD simulations using MD flexible fitting to produce viable structural models and infer a plausible transport mechanism. Conforming to the theme of integration, a short compendium of an exploratory project—developing a hybrid atomistic-continuum method—is presented, including initial results and a novel fluctuating hydrodynamics model and corresponding numerical code.Dissertation/ThesisDoctoral Dissertation Physics 201

    16th Scandinavian Symposium and Workshops on Algorithm Theory: SWAT 2018, June 18-20, 2018, Malmö University, Malmö, Sweden

    Get PDF

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum
    corecore