613 research outputs found

    Instabilities in the wake of an inclined prolate spheroid

    Full text link
    We investigate the instabilities, bifurcations and transition in the wake behind a 45-degree inclined 6:1 prolate spheroid, through a series of direct numerical simulations (DNS) over a wide range of Reynolds numbers (Re) from 10 to 3000. We provide a detailed picture of how the originally symmetric and steady laminar wake at low Re gradually looses its symmetry and turns unsteady as Re is gradually increased. Several fascinating flow features have first been revealed and subsequently analysed, e.g. an asymmetric time-averaged flow field, a surprisingly strong side force etc. As the wake partially becomes turbulent, we investigate a dominating coherent wake structure, namely a helical vortex tube, inside of which a helical symmetry alteration scenario was recovered in the intermediate wake, together with self-similarity in the far wake.Comment: Book chapter in "Computational Modeling of Bifurcations and Instabilities in Fluid Dynamics (A. Gelfgat ed.)", Springe

    Numerical Insights for AAA Growth Understanding and Predicting: Morphological and Hemodynamic Risk Assessment Features and Transient Coherent Structures Uncovering

    Get PDF
    Les anévrismes de l'aorte abdominale (AAA) sont des dilatations localisées et fréquentes de l'aorte. En cas de rupture, seul un traitement immédiat peut prévenir la morbidité et la mortalité. Le diamètre maximal AAA (DmaxD_{max}) et la croissance sont les paramètres actuels pour évaluer le risque associé et planifier l'intervention, avec des seuils inférieurs pour les femmes. Cependant, ces critères ne sont pas personnalisés ; la rupture peut se produire à un diamètre inférieur et les patients vivre avec un AAA important. Si l'on sait que la maladie est associée à une modification de la morphologie et de la circulation sanguine, à un dépôt de thrombus intra-luminal et à des symptômes cliniques, les mécanismes de croissance ne sont pas encore entièrement compris. Dans cette étude longitudinale, une analyse morphologique et des simulations de flux sanguins sont effectuées et comparées aux sujets témoins chez 32 patients ayant reçu un diagnostic clinique d'AAA et au moins 3 tomodensitogrammes de suivi par patient. L'objectif est d'abord d'examiner quels paramètres stratifient les patients entre les groupes sains, à faible risque et à risque élevé. Les corrélations locales entre les paramètres hémodynamiques et la croissance de l'AAA sont également explorées, car la croissance hétérogène de l'AAA n'est actuellement pas comprise. Enfin, les paramètres composites sont construits à partir de données cliniques, morphologiques et hémodynamiques et de leur capacité à prédire si un patient sera soumis à un test de risque. La performance de ces modèles construits à partir de l'apprentissage supervisé est évaluée par les ROC AUC : ils sont respectivement de 0.73 ± 0.09, 0.93 ± 0.08 et 0.96 ± 0.10 . En incorporant tous les paramètres, on obtient une AUC de 0.98 ± 0.06. Pour mieux comprendre les interactions entre la croissance et la topologie de l'écoulement de l'AAA, on propose un worflow spécifique au patient pour calculer les exposants de Lyapunov en temps fini et extraire les structures lagrangiennes-cohérentes (SLC). Ce modèle de calcul a d'abord été comparé à l'imagerie par résonance magnétique (IRM) par contraste de phase 4-D chez 5 patients. Pour mieux comprendre l'impact de la topologie de l'écoulement et du transport sur la croissance de l'AAA, des SLC hyperboliques répulsives ont été calculées chez un patient au cours d'un suivi de 8 ans, avec 9 mesures morphologiques volumétriques de l'AAA par tomographie-angiographie. Les SLC ont défini les frontières du jet entrant dans l'AAA. Les domaines situés entre le SLC et le mur aortique ont été considérés comme des zones de stagnation. Leur évolution a été étudiée lors de la croissance de l'AAA. En plus des SLC hyperboliques (variétés attractives et répulsives) découvertes par FTLE, les SLC elliptiques ont également été considérées. Il s'agit de régions dominées par la rotation, ou tourbillons, qui sont de puissants outils pour comprendre les phénomènes de transport dans les AAA.Abdominal aortic aneurysms (AAA) are localized, commonly-occurring dilations of the aorta. In the event of rupture only immediate treatment can prevent morbidity and mortality. The AAA maximal diameter (DmaxD_{max}) and growth are the current metrics to evaluate the associated risk and plan intervention, with lower thresholds for women. However, these criteria lack patient specificity; rupture may occur at lower diameter and patients may live with large AAA. If the disease is known to be associated with altered morphology and blood flow, intra-luminal thrombus deposit and clinical symptoms, the growth mechanisms are yet to be fully understood. In this longitudinal study, morphological analysis and blood flow simulations for 32 patients with clinically diagnosed AAA and at least 3 follow-up CT-scans per patient, are performed and compared to control subjects. The aim is first to investigate which metrics stratify patients between healthy, low risk and high risk groups. Local correlations between hemodynamical metrics and AAA growth are also explored, as AAA heterogeneous growth is currently not understood. Finally, composite metrics are built from clinical, morphological, and hemodynamical data, and their ability to predict if a patient will become at risk tested. Performance of these models built from supervised learning is assessed by ROC AUCs: they are respectively, 0.73 ± 0.09, 0.93 ± 0.08 and 0.96 ± 0.10. Mixing all metrics, an AUC of 0.98 ± 0.06 is obtained. For further insights into AAA flow topology/growth interaction, a workout of patient-specific computational flow dynamics (CFD) is proposed to compute finite-time Lyapunov exponents and extract Lagrangian-coherent structures (LCS). This computational model was first compared with 4-D phase-contrast magnetic resonance imaging (MRI) on 5 patients. To better understand the impact of flow topology and transport on AAA growth, hyperbolic, repelling LCS were computed in 1 patient during 8-years follow-up, including 9 volumetric morphologic AAA measures by computed tomography-angiography (CTA). LCS defined barriers to Lagrangian jet cores entering AAA. Domains enclosed between LCS and the aortic wall were considered to be stagnation zones. Their evolution was studied during AAA growth. In addition to hyperbolic (attracting and repelling) LCS uncovered by FTLE, elliptic LCS were also considered. Those encloses rotation-dominated regions, or vortices, which are powerful tools to understand the flow transport in AAA

    Novel mesh generation method for accurate image-based computational modelling of blood vessels

    Get PDF

    Flow structure in a model of aircraft trailing vortices

    Get PDF
    We consider a model of incompressible trailing vortices consisting of an array of counter-rotating structures in a doubly periodic domain, infinite in the vertical direction. The two-dimensional vortex array of Mallier and Maslowe is combined with an axial velocity profile chosen proportional to the initial axial vorticity to provide an initial condition for the vortex wake. This base flow is a weak solution of the steady Euler equations with three velocity components that are functions of two spatial coordinates, thus allowing its linear stability properties to be investigated. These are used to interpret several stages in the development of vortex structure observed in fully three-dimensional direct numerical simulation (DNS) at Reynolds numbers Gamma/(2pinu)=[script O](1000). For sufficiently high axial velocity, its effect can be seen, in that each vortex in the linear array first develops helical structures before undergoing a period of relaminarization. At later times the more slowly growing cooperative elliptical instabilities become apparent, but the helical structure persists and the observed vortical structures remain coherent for longer periods than in the absence of axial velocity. Using the stretched-vortex subgrid model, large-eddy simulation runs are performed at large Reynolds numbers and a mixing transition identified at about Re=1–2×10^4. Similar phenomena are observed in these simulations as are seen in the DNS

    A Comprehensive Three-Dimensional Model of the Cochlea

    Get PDF
    The human cochlea is a remarkable device, able to discern extremely small amplitude sound pressure waves, and discriminate between very close frequencies. Simulation of the cochlea is computationally challenging due to its complex geometry, intricate construction and small physical size. We have developed, and are continuing to refine, a detailed three-dimensional computational model based on an accurate cochlear geometry obtained from physical measurements. In the model, the immersed boundary method is used to calculate the fluid-structure interactions produced in response to incoming sound waves. The model includes a detailed and realistic description of the various elastic structures present. In this paper, we describe the computational model and its performance on the latest generation of shared memory servers from Hewlett Packard. Using compiler generated threads and OpenMP directives, we have achieved a high degree of parallelism in the executable, which has made possible several large scale numerical simulation experiments that study the interesting features of the cochlear system. We show several results from these simulations, reproducing some of the basic known characteristics of cochlear mechanics.Comment: 22 pages, 5 figure

    The Caltech Photooxidation Flow Tube reactor: design, fluid dynamics and characterization

    Get PDF
    Flow tube reactors are widely employed to study gas-phase atmospheric chemistry and secondary organic aerosol (SOA) formation. The development of a new laminar-flow tube reactor, the Caltech Photooxidation Flow Tube (CPOT), intended for the study of gas-phase atmospheric chemistry and SOA formation, is reported here. The present work addresses the reactor design based on fluid dynamical characterization and the fundamental behavior of vapor molecules and particles in the reactor. The design of the inlet to the reactor, based on computational fluid dynamics (CFD) simulations, comprises a static mixer and a conical diffuser to facilitate development of a characteristic laminar flow profile. To assess the extent to which the actual performance adheres to the theoretical CFD model, residence time distribution (RTD) experiments are reported with vapor molecules (O_3) and submicrometer ammonium sulfate particles. As confirmed by the CFD prediction, the presence of a slight deviation from strictly isothermal conditions leads to secondary flows in the reactor that produce deviations from the ideal parabolic laminar flow. The characterization experiments, in conjunction with theory, provide a basis for interpretation of atmospheric chemistry and SOA studies to follow. A 1-D photochemical model within an axially dispersed plug flow reactor (AD-PFR) framework is formulated to evaluate the oxidation level in the reactor. The simulation indicates that the OH concentration is uniform along the reactor, and an OH exposure (OH_(exp)) ranging from ∼ 10^9 to ∼ 10^(12) molecules cm^(−3) s can be achieved from photolysis of H_2O_2. A method to calculate OH_(exp) with a consideration for the axial dispersion in the present photochemical system is developed

    Simulation of shear-driven flows:transition with a free surface and confined turbulence

    Get PDF
    The research work reported in the present dissertation is aimed at the analysis of complex physical phenomena involving instabilities and nonlinearities occurring in fluids through state-of-the-art numerical modeling. Solutions of intricate fluid physics problems are devised in two particularly arduous situations: fluid domains with moving boundaries and the high-Reynolds-number regime dominated by nonlinear convective effects. Shear-driven flows of incompressible Newtonian fluids enclosed in cavities of varying geometries are thoroughly investigated in the two following frameworks: transition with a free surface and confined turbulence. The physical system we consider is made of an incompressible Newtonian fluid filling a bounded, or partially bounded cavity. A series of shear-driven flows are easily generated by setting in motion some part of the container boundary. These driven-cavity flows are not only technologically important, they are of great scientific interest because they display almost all physical fluid phenomena that can possibly occur in incompressible flows, and this in the simplest geometrical settings. Thus corner eddies, secondary flows, longitudinal vortices, complex three-dimensional patterns, chaotic particle motions, nonuniqueness, transition, and turbulence all occur naturally and can be studied in the same geometry. This facilitates the comparison of results from experiments, analysis, and computation over the whole range of Reynolds numbers. The flows under consideration are part of a larger class of confined flows driven by linear or angular momentum gradients. This dissertation reports a detailed study of a novel numerical method developed for the simulation of an unsteady free-surface flow in three-space-dimensions. This method relies on a moving-grid technique to solve the Navier-Stokes equations expressed in the arbitrary Lagrangian-Eulerian (ALE) kinematics and discretized by the spectral element method. A comprehensive analysis of the continuous and discretized formulations of the general problem in the ALE frame, with nonlinear, non-homogeneous and unsteady boundary conditions is presented. In this dissertation, we first consider in the internal turbulent flow of a fluid enclosed in a bounded cubical cavity driven by the constant translation of its lid. The solution of this flow relied on large-eddy simulations, which served to improve our physical understanding of this complex flow dynamics. Subsequently, a novel subgrid model based on approximate deconvolution methods coupled with a dynamic mixed scale model was devised. The large-eddy simulation of the lid-driven cubical cavity flow based on this novel subgrid model has shown improvements over traditional subgrid-viscosity type of models. Finally a new interpretation of approximate deconvolution models when used with implicit filtering as a way to approximate the projective grid filter was given. This led to the introduction of the grid filter models. Through the use of a newly-developed method of numerical simulation, in this dissertation we solve unsteady flows with a flat and moving free-surface in the transitional regime. These flows are the incompressible flow of a viscous fluid enclosed in a cylindrical container with an open top surface and driven by the steady rotation of the bottom wall. New flow states are investigated based on the fully three-dimensional solution of the Navier-Stokes equations for these free-surface cylindrical swirling flows, without resorting to any symmetry properties unlike all other results available in the literature. To our knowledge, this study delivers the most general available results for this free-surface problem due to its original mathematical treatment. This second part of the dissertation is a basic research task directed at increasing our understanding of the influence of the presence of a free surface on the intricate transitional flow dynamics of shear-driven flows
    corecore