2,402 research outputs found

    Achieving Low-Complexity Maximum-Likelihood Detection for the 3D MIMO Code

    Get PDF
    The 3D MIMO code is a robust and efficient space-time block code (STBC) for the distributed MIMO broadcasting but suffers from high maximum-likelihood (ML) decoding complexity. In this paper, we first analyze some properties of the 3D MIMO code to show that the 3D MIMO code is fast-decodable. It is proved that the ML decoding performance can be achieved with a complexity of O(M^{4.5}) instead of O(M^8) in quasi static channel with M-ary square QAM modulations. Consequently, we propose a simplified ML decoder exploiting the unique properties of 3D MIMO code. Simulation results show that the proposed simplified ML decoder can achieve much lower processing time latency compared to the classical sphere decoder with Schnorr-Euchner enumeration

    Blind Receiver Design for OFDM Systems Over Doubly Selective Channels

    Get PDF
    We develop blind data detectors for orthogonal frequency-division multiplexing (OFDM) systems over doubly selective channels by exploiting both frequency-domain and time-domain correlations of the received signal. We thus derive two blind data detectors: a time-domain data detector and a frequency-domain data detector. We also contribute a reduced complexity, suboptimal version of a time-domain data detector that performs robustly when the normalized Doppler rate is less than 3%. Our frequency-domain data detector and suboptimal time-domain data detector both result in integer least-squares (LS) problems. We propose the use of the V-BLAST detector and the sphere decoder. The time-domain data detector is not limited to the Doppler rates less than 3%, but cannot be posed as an integer LS problem. Our solution is to develop an iterative algorithm that starts from the suboptimal time-domain data detector output. We also propose channel estimation and prediction algorithms using a polynomial expansion model, and these estimators work with data detectors (decision-directed mode) to reduce the complexity. The estimators for the channel statistics and the noise variance are derived using the likelihood function for the data. Our blind data detectors are fairly robust against the parameter mismatch

    Unitary space-time modulation via Cayley transform

    Get PDF
    A prevoiusly proposed method for communicating with multiple antennas over block fading channels is unitary space-time modulation (USTM). In this method, the signals transmitted from the antennas, viewed as a matrix with spatial and temporal dimensions, form a unitary matrix, i.e., one with orthonormal columns. Since channel knowledge is not required at the receiver, USTM schemes are suitable for use on wireless links where channel tracking is undesirable or infeasible, either because of rapid changes in the channel characteristics or because of limited system resources. Previous results have shown that if suitably designed, USTM schemes can achieve full channel capacity at high SNR and, moreover, that all this can be done over a single coherence interval, provided the coherence interval and number of transmit antennas are sufficiently large, which is a phenomenon referred to as autocoding. While all this is well recognized, what is not clear is how to generate good performing constellations of (nonsquare) unitary matrices that lend themselves to efficient encoding/decoding. The schemes proposed so far either exhibit poor performance, especially at high rates, or have no efficient decoding algorithms. We propose to use the Cayley transform to design USTM constellations. This work can be viewed as a generalization, to the nonsquare case, of the Cayley codes that have been proposed for differential USTM. The codes are designed based on an information-theoretic criterion and lend themselves to polynomial-time (often cubic) near-maximum-likelihood decoding using a sphere decoding algorithm. Simulations suggest that the resulting codes allow for effective high-rate data transmission in multiantenna communication systems without knowing the channel. However, our preliminary results do not show a substantial advantage over training-based schemes

    MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

    No full text
    In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts
    corecore