1,491 research outputs found

    Experimental demonstration of performance enhancement in non-linearity limited optical fibre systems

    Get PDF
    This thesis presents a study of the nonlinear limits of coherent, long-haul, optical fibre transmission systems and studies the capabilities of digital and all-optical nonlinearity compensation techniques to enhance their performance. By deriving the theoretical description of optical fibre nonlinear Kerr effects, this thesis presents theoretical, numerical, and experimental evidence showing that the compensation efficiency of deterministic nonlinear impairments in OPC assisted transmission system is highly dependent on the span length. This document shows that the deployment of multiple OPCs, in a system limited by deterministic signal-signal nonlinear interactions, can negate the performance enhancement achieved by a single OPC. I have derived, and verified by simulations, closed form equations that accurately represent the ultimate nonlinear threshold of the nondeterministic nonlinear signal-noise interaction limit in discretely amplified and quasi-lossless Raman optical fibre transmission systems. This nondeterministic nonlinear threshold can be unveiled when deploying ideal nonlinearity compensation techniques and can be minimised by deploying multiple OPCs.In this thesis, I have experimentally shown that the performance enhancement achieved bymid-link OPC when deployed in discretely amplified transmission system is highly dependent on the bandwidth of the signals propagating along the system. The experimental results have shown that the OPC enhances the reach of discretely amplified transmission system by 43%,32%, and 24% for 2x28Gbaud, 4x28Gbaud, and 8x28Gbaud of PM-QPSK signals,respectively. Also, I have experimentally demonstrated the highest reported reach enhancement of 72% (compared to EDC system) for 3.6Tbps (30x30Gbaud PM-QPSK, spectral efficiency of 3.6bps/Hz); when deploying a mid-link OPC in distributed Raman system

    Design of Energy-Efficient A/D Converters with Partial Embedded Equalization for High-Speed Wireline Receiver Applications

    Get PDF
    As the data rates of wireline communication links increases, channel impairments such as skin effect, dielectric loss, fiber dispersion, reflections and cross-talk become more pronounced. This warrants more interest in analog-to-digital converter (ADC)-based serial link receivers, as they allow for more complex and flexible back-end digital signal processing (DSP) relative to binary or mixed-signal receivers. Utilizing this back-end DSP allows for complex digital equalization and more bandwidth-efficient modulation schemes, while also displaying reduced process/voltage/temperature (PVT) sensitivity. Furthermore, these architectures offer straightforward design translation and can directly leverage the area and power scaling offered by new CMOS technology nodes. However, the power consumption of the ADC front-end and subsequent digital signal processing is a major issue. Embedding partial equalization inside the front-end ADC can potentially result in lowering the complexity of back-end DSP and/or decreasing the ADC resolution requirement, which results in a more energy-effcient receiver. This dissertation presents efficient implementations for multi-GS/s time-interleaved ADCs with partial embedded equalization. First prototype details a 6b 1.6GS/s ADC with a novel embedded redundant-cycle 1-tap DFE structure in 90nm CMOS. The other two prototypes explain more complex 6b 10GS/s ADCs with efficiently embedded feed-forward equalization (FFE) and decision feedback equalization (DFE) in 65nm CMOS. Leveraging a time-interleaved successive approximation ADC architecture, new structures for embedded DFE and FFE are proposed with low power/area overhead. Measurement results over FR4 channels verify the effectiveness of proposed embedded equalization schemes. The comparison of fabricated prototypes against state-of-the-art general-purpose ADCs at similar speed/resolution range shows comparable performances, while the proposed architectures include embedded equalization as well

    Active Wavelength Selection for Chemical Identification Using Tunable Spectroscopy

    Get PDF
    Spectrometers are the cornerstone of analytical chemistry. Recent advances in microoptics manufacturing provide lightweight and portable alternatives to traditional spectrometers. In this dissertation, we developed a spectrometer based on Fabry-Perot interferometers (FPIs). A FPI is a tunable (it can only scan one wavelength at a time) optical filter. However, compared to its traditional counterparts such as FTIR (Fourier transform infrared spectroscopy), FPIs provide lower resolution and lower signal-noiseratio (SNR). Wavelength selection can help alleviate these drawbacks. Eliminating uninformative wavelengths not only speeds up the sensing process but also helps improve accuracy by avoiding nonlinearity and noise. Traditional wavelength selection algorithms follow a training-validation process, and thus they are only optimal for the target analyte. However, for chemical identification, the identities are unknown. To address the above issue, this dissertation proposes active sensing algorithms that select wavelengths online while sensing. These algorithms are able to generate analytedependent wavelengths. We envision this algorithm deployed on a portable chemical gas platform that has low-cost sensors and limited computation resources. We develop three algorithms focusing on three different aspects of the chemical identification problems. First, we consider the problem of single chemical identification. We formulate the problem as a typical classification problem where each chemical is considered as a distinct class. We use Bayesian risk as the utility function for wavelength selection, which calculates the misclassification cost between classes (chemicals), and we select the wavelength with the maximum reduction in the risk. We evaluate this approach on both synthesized and experimental data. The results suggest that active sensing outperforms the passive method, especially in a noisy environment. Second, we consider the problem of chemical mixture identification. Since the number of potential chemical mixtures grows exponentially as the number of components increases, it is intractable to formulate all potential mixtures as classes. To circumvent combinatorial explosion, we developed a multi-modal non-negative least squares (MMNNLS) method that searches multiple near-optimal solutions as an approximation of all the solutions. We project the solutions onto spectral space, calculate the variance of the projected spectra at each wavelength, and select the next wavelength using the variance as the guidance. We validate this approach on synthesized and experimental data. The results suggest that active approaches are superior to their passive counterparts especially when the condition number of the mixture grows larger (the analytes consist of more components, or the constituent spectra are very similar to each other). Third, we consider improving the computational speed for chemical mixture identification. MM-NNLS scales poorly as the chemical mixture becomes more complex. Therefore, we develop a wavelength selection method based on Gaussian process regression (GPR). GPR aims to reconstruct the spectrum rather than solving the mixture problem, thus, its computational cost is a function of the number of wavelengths. We evaluate the approach on both synthesized and experimental data. The results again demonstrate more accurate and robust performance in contrast to passive algorithms

    Equalized on-chip interconnect : modeling, analysis, and design

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 115-118).This thesis work explores the use of equalization techniques to improve throughput and reduce power consumption of on-chip interconnect. A theoretical model for an equalized on-chip interconnect is first suggested to provide mathematical formulation for the link behavior. Based on the model, a fast-design space exploration methodology is demonstrated to search for the optimal link design parameters (wire and circuit) and to generate the optimal performance-power trade-off curve for the equalized interconnects. This thesis also proposes new circuit techniques, which improve the revealed demerits of the conventional circuit topologies. The proposed charge-injection transmitter directly conducts pre-emphasis current from the supply into the channel, eliminating the power overhead of analog current subtraction in the conventional transmit pre-emphasis, while significantly relaxing the driver coefficient accuracy requirements. The transmitter utilizes a power efficient nonlinear driver by compensating non-linearity with pre-distorted equalization coefficients. A trans-impedance amplifier at the receiver achieves low static power consumption, large signal amplitude, and high bandwidth by mitigating limitations of purely-resistive termination. A test chip is fabricated in 90-nm bulk CMOS technology and tested over a 10 mm, 2[micro]m pitched on-chip differential wire. The transceiver consumes 0.37-0.63 pJ/b with 2-6 Gb/s/ch.by Byungsub Kim.Ph.D

    Efficient simulation of the pantograph-catenary dynamic interaction. Catenary optimisation and installation error analysis

    Full text link
    Tesis por compendioEl modelado y la simulación de la interacción dinámica entre el pantógrafo y la catenaria se ha convertido en una herramienta imprescindible para agilizar el proceso de diseño de catenarias ferroviarias ya que, entre otras ventajas, es posible reducir el número necesario de los tan costosos ensayos experimentales en vía. Para la realización de dichas simulaciones numéricas, la catenaria se modela mediante el método de los Elementos Finitos, mientras que el modelo del pantógrafo es de parámetros concentrados. La interacción entre ambos sistemas se trata con un método de penalti. Tras resolver el problema no lineal de configuración inicial, la ecuación del movimiento se linealiza, y se resuelve con la técnica HHT. Sin embargo, el aflojamiento de las péndolas y los despegues del pantógrafo son dos fuertes no linealidades que deben ser consideradas en la resolución del problema dinámico, aunque aumenten notablemente el coste computacional de cada simulación. Los objetivos principales de esta Tesis son encontrar catenarias óptimas en términos de calidad de captación de corriente y analizar los efectos de los errores de montaje de la catenaria. Para alcanzarlos, es necesario realizar un número elevado de simulaciones de la interacción dinámica entre pantógrafo y catenaria, cuyo coste computacional puede llegar a ser prohibitivo. Para reducir el coste computacional, la primera propuesta se basa en el cálculo de una solución paramétrica de la interacción dinámica entre pantógrafo y catenaria, para cualquier valor de las variables de diseño, por medio de la técnica Proper Generalised Decomposition (PGD). Si las longitudes de las péndolas son consideradas como variables de diseño, la aplicación de este método resulta exitosa en el caso del problema de equilibrio estático, pero no en el caso del dinámico, donde se considera que las péndolas no transmiten fuerzas a compresión. La solución del problema resulta muy sensible ante pequeños cambios de las variables y por tanto, se requiere de un elevado número de modos PGD para tener una solución paramétrica de suficiente precisión. La segunda propuesta consiste en el desarrollo de una estrategia para resolver el problema de interacción dinámica con la que se reduzca considerablemente el tiempo de cálculo. El algoritmo propuesto se divide en dos fases y se basa en pasar los términos no lineales a la parte derecha de la ecuación de la dinámica del sistema. Tras el cálculo y almacenamiento de la respuesta ante fuerzas unitarias, en la segunda etapa del método, el tratamiento de las no linealidades se condensa en un sistema de ecuaciones pequeño cuyas incógnitas son las fuerzas relacionadas con dichas no linealidades, en vez de los desplazamientos nodales globales. Con este algoritmo eficiente, es posible llevar a cabo la optimización de la geometría de catenarias ferroviarias. En concreto, la altura del cable de contacto y la separación entre péndolas son los parámetros de diseño a optimizar para obtener así una captación de corriente óptima. El problema de optimización se resuelve mediante un Algoritmo Genético clásico, y se aplica a diferentes tipos de catenarias. Los resultados obtenidos indican que un diseño óptimo de la geometría puede mejorar notablemente la captación de corriente de las catenarias actuales. Finalmente, se estudia la influencia que tienen los errores de montaje de la catenaria en el comportamiento dinámico del sistema. Con un planteamiento estocástico, se considera variabilidad en la longitud de las péndolas, en la separación entre ellas y en la altura de los soportes. Mediante la aplicación un método clásico de Montecarlo, se propaga la incertidumbre a las magnitudes de interés y se obtiene su función de densidad de probabilidad. Los resultados muestran que los errores cometidos en la colocación de las péndolas apenas influyen en la respuesta del sistema, mientras que errores en lModelling and simulation of the dynamic interaction between pantograph and catenary has become a powerful tool to expedite the catenary design process since, among other advantages, it helps in reducing the number of the costly experimental in-line tests. In order to tackle these numerical simulations, in this Thesis the catenary system is modelled by the Finite Element technique, while a simple lumped-mass model is used for the pantograph. The interaction between the two systems is accomplished with a penalty formulation. After solving the initial nonlinear configuration problem, the equation of motion is linearised with respect to the static equilibrium position and it is then solved by applying the Hilber-Hughes-Taylor (HHT) time integration method. However, dropper slackening and pantograph contact losses are two sources of nonlinearities which must be considered in the solution procedure at the expense of an increase in the computational cost. The main objectives of this Thesis are both to find optimal catenaries in terms of current collection quality and to analyse the effect of installation errors in the dynamic behaviour of the system. To achieve these goals, it is mandatory to perform a large number of pantograph-catenary dynamic simulations for which the computational cost can become prohibitive. In order to reduce this computational effort, the first proposal made in this Thesis is to precompute a parametric solution of the pantograph-catenary dynamic interaction for all values of the design variables, by means of the Proper Generalised Decomposition (PGD) technique. If dropper lengths are considered as design variables, this parametric approach is successful when applied to the static equilibrium problem. Nevertheless, in the dynamic case, when dropper slackening is considered, the solution exhibits a great sensitivity to small changes in the parameters and therefore, a huge number of PGD modes are required to obtain the parametric solution with enough accuracy. The impossibility of having a parametric solution leads the author to propose a fast strategy to simulate the dynamic interaction problem, providing remarkable saves in computational cost. The method is divided into two stages which are based on moving the nonlinear terms to the right hand side of the dynamic equation. In the first stage, the response of the system under unitary forces is precomputed and stored. Then, in the second stage of the method, the treatment of the nonlinearities is condensed into a small system of equations, whose unknowns are now the forces associated with the nonlinearities instead of the nodal displacements of the whole system. With this proposed algorithm, it is possible to carry out efficient optimisations of the catenary geometry. Specifically, contact wire height and dropper spacing are considered as design variables in order to obtain the most uniform interaction force that leads to the optimal current collection. The optimisation problem is solved by means of a classic Genetic Algorithm, applied to both simple and stitched catenaries. The results obtained show that an optimal catenary design can remarkably improve the current collection quality of the actual catenaries. Finally, the influence of the installation errors on the dynamic behaviour of the system is analysed under a stochastic approach in which variability in dropper length, dropper spacing and support height are involved in the simulations. The use of a Monte Carlo method allows the propagation of the uncertainty to the magnitudes of interest of the dynamic solution and therefore, to obtain their probability density function. The results of Monte Carlo simulations demonstrate that dropper spacing errors are slightly influential, whilst dropper length and supsupport height installation errors have a strong influence on the dynamic behaviour of the system.El modelatge i la simulació de la interacció dinàmica entre el pantògraf i la catenària ha esdevingut en una ferramenta imprescindible per a agilitzar el procés de disseny de catenàries ferroviàries degut, entre altres coses, a la possibilitat de reduir el nombre dels tan costosos assajos experimentals en via. Per a la realització d'aquestes simulacions numèriques, la catenària es modela mitjançant el mètode dels Elements Finits, mentre que el model de pantògraf és de paràmetres concentrats. La interacció entre ambdós sistemes es tracta amb un mètode de penalti. Després de resoldre el problema no-lineal de configuració inicial, l'equació del moviment es linealitza i es resol amb la tècnica HHT. Tanmateix, l'afluixament de les pèndoles a compressió i la pèrdua de contacte del pantògraf són dues fortes no-linealitats que han de ser considerades en la resolució del problema dinàmic, malgrat l'augment que produeixen del cost computacional de cada simulació. Els objectius principals d'aquesta Tesi són trobar catenàries òptimes en termes de qualitat de captació de corrent i analitzar els efectes dels errors de muntatge de la catenària. Per a assolir-los és necessari realitzar un nombre elevat de simulacions de la interacció dinàmica entre pantògraf i catenària, el que pot comportar un cost computacional prohibitiu. Per tal de reduir el cost computacional, la primera proposta consisteix a calcular una solució paramètrica del problema d'interacció dinàmica entre pantògraf i catenària, per a qualsevol valor de les variables de disseny, mitjançant la tècnica Proper Generalised Decomposition (PGD). Si les longituds de les pèndoles es consideren com a variables de disseny, l'aplicació d'aquest mètode és exitosa en el cas del problema d'equilibri estàtic, però no en el cas del dinàmic, on es considera que les pèndoles no poden transmetre força a compressió. La solució del problema és molt sensible a xicotets canvis de les variables i per tant, es necessita un elevat nombre de modes PGD per a obtenir una solució paramètrica amb suficient precisió. La segona proposa consisteix en el desenvolupament d'una estratègia per a resoldre el problema d'interacció dinàmica que reduïsca considerablement el temps de simulació. L'algoritme proposat es divideix en dues fases i es basa a moure els termes no lineals a la part dreta de l'equació de la dinàmica del sistema. Després de calcular i s'emmagatzemar la resposta del sistema a forces unitàries, en la segona etapa del mètode, el tractament de les no linealitats es condensa en un xicotet sistema d'equacions les incògnites del qual passen a ser forces en compte de desplaçaments. Amb aquest algoritme eficient, s'ha pogut realitzar l'optimització de la geometria de catenàries ferroviàries. En concret, l'altura del cable de contacte i la separació entre pèndoles es consideren com a paràmetres a optimitzar per a obtenir una òptima captació de corrent. L'optimització es porta a terme mitjançant un Algoritme Genètic clàssic, i s'aplica a diferents tipus de catenàries. Els resultats obtinguts indiquen que un disseny òptim de la geometria pot millorar notablement la captació de corrent de les actuals catenàries. Finalment s'estudia la influència que tenen les errades de muntatge de la catenària en el comportament dinàmic del sistema. Aquest plantejament estocàstic considera variabilitat en la longitud de les pèndoles, la separació entre aquestes i l'altura dels suports. Per mitjà d'un mètode clàssic de Montecarlo, es propaga la incertesa a les magnituds d'interés i s'obté la seua funció de densitat de probabilitat. Els resultats mostren que hi ha molt poca influència per part de les errades comeses en la col·locació de les pèndoles, mentre que errades en la longitud de les pèndoles i en l'altura dels suports sí que influeixen considerablement en el comportament dinàmic del sistema.Gregori Verdú, S. (2018). Efficient simulation of the pantograph-catenary dynamic interaction. Catenary optimisation and installation error analysis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/104507TESISCompendi

    Studies on strength and stability of toroidal shell forms for containment applications

    Get PDF
    Shells find applications in many engineering disciplines (Zingoni 1997), with containment shells of revolution being among the most important (Zingoni 2001, 2015). Searching for the most efficient geometrical forms remains one of the most important goals of shell research. Associated with that is the need to develop appropriate analytical tools for novel shell forms. Complete toroidal shells are not widely used shells of revolution owing to their geometries and associated complexities in the theory of the shells. They can offer certain structural and functional advantages over conventional shells and are mainly used for fluid containment. Toroids have also been proposed for nuclear fusion reactors, rocket fuel tanks, medical hyperbaric treatment units and applications in aerospace and underwater fields. Any desired cross-sectional forms of the shells can be developed theoretically, suggesting the possibility of adopting toroidal shells in many engineering applications if the behaviour of the shells can be understood and quantified. The design analysis of thin-walled structures is mostly based on strength and stiffness considerations. Based on linear elastic theory, Zingoni, Enoma & Govender (2015) presented an elegant theoretical solution for the non-shallow bending of an elliptic toroid, while Enoma and Zingoni (2017) have investigated toroidal shells having the same type of multi-shell cross-section as was first proposed by Zingoni (2001) for novel sludge digester shells. On the basis of classical elastic shell theory and numerical modelling, this thesis attempts to provide a framework upon which complete toroidal shells of any cross-sectional profile can be analysed, and investigates the state of stress and buckling of selected toroidal shell forms including unconventional ones under axisymmetric pressure loading, i.e. when each of the shells is used as a pressure vessel and a storage tank. Following the general strategy developed for shells of revolution by Zingoni (1997) over the past 20 years, reasonably accurate results for shell stresses are derived by combining the membrane solution with an approximate solution of the bending-theory equations for toroidal shells, instead of attempting to solve the exact differential equations, which is extremely difficult. The developed formulations are applied to various cross-sectional types of toroidal vessels under both uniform pressure and hydrostatic pressure loading, and the accuracy of the formulation is verified in each of the cases through numerical examples with finite-element analysis. For the buckling considerations, governing stability equations of toroidal shells of any cross section are presented. These are specialised for the problem of a multi-shell toroid under uniform external pressure, and approximately solved to obtain the critical buckling solution for this geometry. The proposed solution approach provides accurate failure loads of pressurised multi-shell toroids when compared with those from a finite-element analysis. Finite element modelling is then used to study the nonlinear effects on the buckling response, post-bifurcation behaviour and geometric imperfection sensitivity of this type of vessel, as well as two other cross-sectional geometries (parabolic-ogival and circular-elliptic). Extensive parametric studies on each of these toroids reveal significant aspects of shell behaviour. This thesis represents a significant extension of the work of the group of Prof. Zingoni at the University of Cape Town, and provides much-needed information on the design of new forms of toroidal vessels. The simplified theory developed for the determination of stresses and buckling behaviour has facilitated the investigation of the effects of the various geometric parameters, which in turn has led to new insights on the behaviour of the toroidal shell. It has been found that perfect toroidal vessels under external pressure loading can generally have stable post-buckling behaviour and may, therefore, be able to resist further load beyond the elastic bifurcation loads. The imperfection sensitivity of each of the toroids investigated is seen to vary from shell to shell

    Mitigating Fiber Nonlinearity with Machine Learning

    Get PDF
    Nowadays, optical communication transmission is based mainly on optical fiber networks. Increasing demands for higher-capacity systems are hampered by signal distortions due to nonlinear effects of the commercial optic fibers. Different techniques have been proposed to reverse and mitigate this noise effect on the transmitted signal such as the digital backpropagation (DBP), the Volterra nonlinear compensation, the advanced modulation transmission, and perturbation pre-compensation techniques. While these techniques achieve good results they are too complicated for practical industrial implementation and add more complexity overhead on the system. This thesis is focused on investigating the merits of optical fiber mitigation using Artificial Intelligence (AI) techniques instead of analytical methods. Different AI techniques combined with perturbation-based nonlinear compensation method are used to predict the added nonlinear noise to a 16-Quadrature Amplitude Modulation (QAM) propagating signal. A MATLAB simulation program has been used to model the propagation of the signal and generate the transmitted data. The AI simulations have been employed using Python on dual-polarization single channel systems using single-stage AI techniques such as Neural Network (NN) at receiver or transmitter side and Siamese neural network (SNN), or two-stage AI techniques. In the two-stage method, different supervised classifiers have been used at the receiver side such as multi-layer perceptrons (MLP), decision tree, AdaBoosting, GBoosting, random forest, and extra trees while NN is placed at the transmitter. Additionally, different complexity reduction techniques have been applied to the proposed systems to achieve more practical performance in industrial environment applications. For the first time, a nonlinear-compensation robustness study is applied to the proposed AI techniques by detecting the performance of each technique while changing the single-mode fiber’s nonlinear coefficient value. Moreover, empirical equations are developed to represent the system’s Q-factor enhancement achieved using each of the proposed techniques as a function of the fiber nonlinear coefficient and the data features
    • …
    corecore