339 research outputs found

    Capacity-Achieving MIMO-NOMA: Iterative LMMSE Detection

    Full text link
    This paper considers a low-complexity iterative Linear Minimum Mean Square Error (LMMSE) multi-user detector for the Multiple-Input and Multiple-Output system with Non-Orthogonal Multiple Access (MIMO-NOMA), where multiple single-antenna users simultaneously communicate with a multiple-antenna base station (BS). While LMMSE being a linear detector has a low complexity, it has suboptimal performance in multi-user detection scenario due to the mismatch between LMMSE detection and multi-user decoding. Therefore, in this paper, we provide the matching conditions between the detector and decoders for MIMO-NOMA, which are then used to derive the achievable rate of the iterative detection. We prove that a matched iterative LMMSE detector can achieve (i) the optimal capacity of symmetric MIMO-NOMA with any number of users, (ii) the optimal sum capacity of asymmetric MIMO-NOMA with any number of users, (iii) all the maximal extreme points in the capacity region of asymmetric MIMO-NOMA with any number of users, (iv) all points in the capacity region of two-user and three-user asymmetric MIMO-NOMA systems. In addition, a kind of practical low-complexity error-correcting multiuser code, called irregular repeat-accumulate code, is designed to match the LMMSE detector. Numerical results shows that the bit error rate performance of the proposed iterative LMMSE detection outperforms the state-of-art methods and is within 0.8dB from the associated capacity limit.Comment: Accepted by IEEE TSP, 16 pages, 9 figures. This is the first work that proves the low-complexity iterative receiver (Parallel Interference Cancellation) can achieve the capacity of multi-user MIMO systems. arXiv admin note: text overlap with arXiv:1604.0831

    非直交多元接続のための高信頼空間変調

    Get PDF
     マルチユーザ空間変調(SM: Spatial Modulation)では,SM信号の疎性を用いた圧縮センシングによるマルチユーザ検出が研究されているものの,受信機においてチャネル情報が完全に既知であるという条件の下で議論されている.実際には受信機側でチャネル情報を推定し,推定したチャネル情報を用いて復調処理を行う.推定したチャネル情報の精度は復調の精度に影響を及ぼすため,チャネル推定は重要なものであり考慮しなければならない. そこで本研究ではチャネル推定を,ブロックスパース性を有する信号の再構成問題として扱い,ブロックスパース性を考慮した複素数近似メッセージ伝播法(BS-CAMP: Block-Sparse Complex Approximate Message Passing)によって信号の再構成を行う方法を提案する.BS-CAMPは受信機が送信信号に含まれる非零要素の個数を事前に知る必要がない再構成アルゴリズムとなっており,ランダムアクセス方式にも適用可能である.計算機シミュレーションより,BS-CAMPによるチャネル推定の精度やスループット特性への影響を示す. さらに,高信頼な通信を実現するにはチャネル推定だけでなく誤り訂正符号が重要となる.そこで併せて本研究ではSMに誤り訂正符号化を組み合わせたものの一つである,ターボトレリス符号化空間変調(SM-TTC: SM with Turbo Trellis-Coding)における符号の最適化及び性能解析を行った.具体的には,シンボルベースEXIT(Extrinsic Information Transfer)チャートを用いた低演算符号探索法によって,演算量を低減しながら最良の特性を示す符号を探索する.計算機シミュレーションより,探索した符号を用いたSM-TTCが従来のものよりも優れていること,および提案手法が従来の符号探索法よりも低計算量で符号探索が可能であることを示す.電気通信大学201

    A General MIMO Framework for NOMA Downlink and Uplink Transmission Based on Signal Alignment

    Get PDF
    The application of multiple-input multiple-output (MIMO) techniques to non-orthogonal multiple access (NOMA) systems is important to enhance the performance gains of NOMA. In this paper, a novel MIMO-NOMA framework for downlink and uplink transmission is proposed by applying the concept of signal alignment. By using stochastic geometry, closed-form analytical results are developed to facilitate the performance evaluation of the proposed framework for randomly deployed users and interferers. The impact of different power allocation strategies, such as fixed power allocation and cognitive radio inspired power allocation, on the performance of MIMO-NOMA is also investigated. Computer simulation results are provided to demonstrate the performance of the proposed framework and the accuracy of the developed analytical results

    ADMM-based Detector for Large-scale MIMO Code-domain NOMA Systems

    Full text link
    Large-scale multi-input multi-output (MIMO) code domain non-orthogonal multiple access (CD-NOMA) techniques are one of the potential candidates to address the next-generation wireless needs such as massive connectivity, and high reliability. This work focuses on two primary CD-NOMA techniques: sparse-code multiple access (SCMA) and dense-code multiple access (DCMA). One of the primary challenges in implementing MIMO-CD-NOMA systems is designing the optimal detector with affordable computation cost and complexity. This paper proposes an iterative linear detector based on the alternating direction method of multipliers (ADMM). First, the maximum likelihood (ML) detection problem is converted into a sharing optimization problem. The set constraint in the ML detection problem is relaxed into the box constraint sharing problem. An alternative variable is introduced via the penalty term, which compensates for the loss incurred by the constraint relaxation. The system models, i.e., the relation between the input signal and the received signal, are reformulated so that the proposed sharing optimization problem can be readily applied. The ADMM is a robust algorithm to solve the sharing problem in a distributed manner. The proposed detector leverages the distributive nature to reduce per-iteration cost and time. An ADMM-based linear detector is designed for three MIMO-CD-NOMA systems: single input multi output CD-NOMA (SIMO-CD-NOMA), spatial multiplexing CD-NOMA (SMX-CD-NOMA), and spatial modulated CD-NOMA (SM-CD-NOMA). The impact of various system parameters and ADMM parameters on computational complexity and symbol error rate (SER) has been thoroughly examined through extensive Monte Carlo simulations

    On the Fundamental Limits of Random Non-orthogonal Multiple Access in Cellular Massive IoT

    Get PDF
    Machine-to-machine (M2M) constitutes the communication paradigm at the basis of Internet of Things (IoT) vision. M2M solutions allow billions of multi-role devices to communicate with each other or with the underlying data transport infrastructure without, or with minimal, human intervention. Current solutions for wireless transmissions originally designed for human-based applications thus require a substantial shift to cope with the capacity issues in managing a huge amount of M2M devices. In this paper, we consider the multiple access techniques as promising solutions to support a large number of devices in cellular systems with limited radio resources. We focus on non-orthogonal multiple access (NOMA) where, with the aim to increase the channel efficiency, the devices share the same radio resources for their data transmission. This has been shown to provide optimal throughput from an information theoretic point of view.We consider a realistic system model and characterise the system performance in terms of throughput and energy efficiency in a NOMA scenario with a random packet arrival model, where we also derive the stability condition for the system to guarantee the performance.Comment: To appear in IEEE JSAC Special Issue on Non-Orthogonal Multiple Access for 5G System
    corecore