324 research outputs found

    A novel approach to multi-attribute group decision-making based on interval-valued intuitionistic fuzzy power Muirhead mean

    Get PDF
    This paper focuses on multi-attribute group decision-making (MAGDM) course in which attributes are evaluated in terms of interval-valued intuitionistic fuzzy (IVIF) information. More explicitly, this paper introduces new aggregation operators for IVIF information and further proposes a new IVIF MAGDM method. The power average (PA) operator and the Muirhead mean (MM) are two powerful and effective information aggregation technologies. The most attractive advantage of the PA operator is its power to combat the adverse effects of ultra-evaluation values on the information aggregation results. The prominent characteristic of the MM operator is that it is flexible to capture the interrelationship among any numbers of arguments, making it more powerful than Bonferroni mean (BM), Heronian mean (HM), and Maclaurin symmetric mean (MSM). To absorb the virtues of both PA and MM, it is necessary to combine them to aggregate IVIF information and propose IVIF power Muirhead mean (IVIFPMM) operator and the IVIF weighted power Muirhead mean (IVIFWPMM) operator. We investigate their properties to show the strongness and flexibility. Furthermore, a novel approach to MAGDM problems with IVIF decision-making information is introduced. Finally, a numerical example is provided to show the performance of the proposed method

    Simplified Neutrosophic Sets Based on Interval Dependent Degree for Multi-Criteria Group Decision-Making Problems

    Get PDF
    In this paper, a new approach and framework based on the interval dependent degree for multi-criteria group decision-making (MCGDM) problems with simplified neutrosophic sets (SNSs) is proposed. Firstly, the simplified dependent function and distribution function are defined. Then, they are integrated into the interval dependent function which contains interval computing and distribution information of the intervals

    Full Issue

    Get PDF

    Full Issue

    Get PDF

    Type-2 neutrosophic number based multi-attributive border approximation area comparison (MABAC) approach for offshore wind farm site selection in USA.

    Get PDF
    The technical, logistical, and ecological challenges associated with offshore wind development necessitate an extensive site selection analysis. Technical parameters such as wind resource, logistical concerns such as distance to shore, and ecological considerations such as fisheries all must be evaluated and weighted, in many cases with incomplete or uncertain data. Making such a critical decision with severe potential economic and ecologic consequences requires a strong decision-making approach to ultimately guide the site selection process. This paper proposes a type-2 neutrosophic number (T2NN) fuzzy based multi-criteria decision-making (MCDM) model for offshore wind farm (OWF) site selection. This approach combines the advantages of neutrosophic numbers sets, which can utilize uncertain and incomplete information, with a multi-attributive border approximation area comparison that provides formulation flexibility and easy calculation. Further, this study develops and integrates a techno-economic model for OWFs in the decision-making. A case study is performed to evaluate and rank five proposed OWF sites off the coast of New Jersey. To validate the proposed model, a comparison against three alternative T2NN fuzzy based models is performed. It is demonstrated that the implemented model yields the same ranking order as the alternative approaches. Sensitivity analysis reveals that changing criteria weightings does not affect the ranking order

    Full Issue

    Get PDF
    • …
    corecore