1,378 research outputs found

    Analysis of adaptation law of the robust evolving cloud-based controller

    Get PDF
    In this paper we propose a performance analysis of the robust evolving cloud-based controller (RECCo) according to the different initial scenarios. RECCo is a controller based on fuzzy rule-based (FRB) systems with non-parametric antecedent part and PID type consequent part. Moreover, the controller structure (the fuzzy rules and the membership function) is created in online manner from the data stream. The advantage of the RECCo controller is that do not require any a priory knowledge of the controlled system. The algorithm starts with zero fuzzy rules (zero data clouds) and evolves/learns during the process control. Also the PID parameters of the controller are initialed with zeros and are adapted in online manner. According to the zero initialization of the parameters the new adaptation law is proposed in this article to solve the problems in the starting phase of the process control. Several initial scenarios were theoretically propagated and experimentally tested on the model of a heat-exchanger plant. These experiments prove that the proposed adaptation law improve the performance of the RECCo control algorithm in the starting phase

    Robust evolving cloud-based controller in normalized data space for heat-exchanger plant

    Get PDF
    This paper presents an improved version and a modification of Robust Evolving Cloud-based Controller (RECCo). The first modification is normalization of data space in RECCo. As a consequence, some of the evolving and adaptation parameters become independent of the range of the process output signal. Thus the controller tuning is simplified which makes the approach more appealing for the use in practical applications. The data space normalization is general and is used with Euclidean norm, but other distance metrics could also be used. Beside the normalization new adaptation scheme of the controller gain is proposed which improves the control performance in the case of a negative initial error in starting phase of the evolving process. At the end, different simulation scenarios are tested and analyzed for further practical implementation of the Cloud-based controller into real environments. For that reason a detail simulation study of a plate heat exchanger is performed and different scenarios were analyzed

    Appropriate choice of aggregation operators in fuzzy decision support systems

    Get PDF
    Fuzzy logic provides a mathematical formalism for a unified treatment of vagueness and imprecision that are ever present in decision support and expert systems in many areas. The choice of aggregation operators is crucial to the behavior of the system that is intended to mimic human decision making. This paper discusses how aggregation operators can be selected and adjusted to fit empirical data&mdash;a series of test cases. Both parametric and nonparametric regression are considered and compared. A practical application of the proposed methods to electronic implementation of clinical guidelines is presented<br /

    A CENTER MANIFOLD THEORY-BASED APPROACH TO THE STABILITY ANALYSIS OF STATE FEEDBACK TAKAGI-SUGENO-KANG FUZZY CONTROL SYSTEMS

    Get PDF
    The aim of this paper is to propose a stability analysis approach based on the application of the center manifold theory and applied to state feedback Takagi-Sugeno-Kang fuzzy control systems. The approach is built upon a similar approach developed for Mamdani fuzzy controllers. It starts with a linearized mathematical model of the process that is accepted to belong to the family of single input second-order nonlinear systems which are linear with respect to the control signal. In addition, smooth right-hand terms of the state-space equations that model the processes are assumed. The paper includes the validation of the approach by application to stable state feedback Takagi-Sugeno-Kang fuzzy control system for the position control of an electro-hydraulic servo-system

    A practical implementation of Robust Evolving Cloud-based Controller with normalized data space for heat-exchanger plant

    Get PDF
    The RECCo control algorithm, presented in this article, is based on the fuzzy rule-based (FRB) system named ANYA which has non-parametric antecedent part. It starts with zero fuzzy rules (clouds) in the rule base and evolves its structure while performing the control of the plant. For the consequent part of RECCo PID-type controller is used and the parameters are adapted in an online manner. The RECCo does not require any off-line training or any type of model of the controlled process (e.g. differential equations). Moreover, in this article we propose a normalization of the cloud (data) space and an improved adaptation law of the controller. Due to the normalization some of the evolving parameters can be fixed while the new adaptation law improves the performance of the controller in the starting phase of the process control. To assess the performance of the RECCo algorithm, firstly a comparison study with classical PID controller was performed on a model of a plate heat-exchanger (PHE). Tuning the PID parameters was done using three different techniques (Ziegler–Nichols, Cohen–Coon and pole placement). Furthermore, a practical implementation of the RECCo controller for a real PHE plant is presented. The PHE system has nonlinear static characteristic and a time delay. Additionally, the real sensor's and actuator's limitations represent a serious problem from the control point of view. Besides this, the RECCo control algorithm autonomously learns and evolves the structure and adapts its parameters in an online unsupervised manner

    ANFIS modelling of a twin rotor system using particle swarm optimisation and RLS

    Get PDF
    Artificial intelligence techniques, such as neural networks and fuzzy logic have shown promising results for modelling of nonlinear systems whilst traditional approaches are rather insufficient due to difficulty in modelling of highly nonlinear components in the system. A laboratory set-up that resembles the behaviour of a helicopter, namely twin rotor multiinput multi-output system (TRMS) is used as an experimental rig in this research. An adaptive neuro-fuzzy inference system (ANFIS) tuned by particle swarm optimization (PSO) algorithm is developed in search for non-parametric model for the TRMS. The antecedent parameters of the ANFIS are optimized by a PSO algorithm and the consequent parameters are updated using recursive least squares (RLS). The results show that the proposed technique has better convergence and better performance in modeling of a nonlinear process. The identified model is justified and validated in both time domain and frequency domai

    Comparison approaches for identification of all-data cloud-based evolving systems

    Get PDF
    In this paper we deal with identification of nonlinear systems which are modelled by fuzzy rule-based models that do not assume fixed partitioning of the space of antecedent variables. We first present an alternative way of describing local density in the cloud-based evolving systems. The Mahalanobis distance among the data samples is used which leads to the density that is more suitable when the data are scattered around the input-output surface. All the algorithms for the identification of the cloud parameters are given in a recursive form which is necessary for the implementation of an evolving system. It is also shown that a simple linearised model can be obtained without identification of the consequent parameters. All the proposed algorithms are illustrated on a simple simulation model of a static system

    Actively Semi-Supervised Deep Rule-based Classifier Applied to Adverse Driving Scenarios

    Get PDF
    This paper presents an actively semi-supervised multi-layer neuro-fuzzy modeling method, ASSDRB, to classify different lighting conditions for driving scenes. ASSDRB is composed of a massively parallel ensemble of AnYa type 0-order fuzzy rules. It uses a recursive learning algorithm to update its structure when new data items are provided and, therefore, is able to cope with nonstationarities. Different lighting conditions for driving situations are considered in the analysis, which is used by self-driving cars as a safety mechanism. Differently from mainstream Deep Neural Networks approaches, the ASSDRB is able to learn from unseen data. Experiments on different lighting conditions for driving scenes, demonstrated that the deep neuro-fuzzy modeling is an efficient framework for these challenging classification tasks. Classification accuracy is higher than those produced by alternative machine learning methods. The number of algebraic calculations for the present method are significantly smaller and, therefore, the method is significantly faster than common Deep Neural Networks approaches. Moreover, DRB produced transparent AnYa fuzzy rules, which are human interpretable

    Robust Evolving Cloud-based Controller (ReCCo)

    Get PDF
    This paper presents an autonomous Robust Evolving Cloud-based Controller (RECCo). The control algorithm is a fuzzy type with non-parametric (cloud-based) antecedent part and adaptive PID-R consequent part. The procedure starts with zero clouds (fuzzy rules) and the structure evolves during performing the process control. The PID-R parameters of the first cloud are initialized with zeros and furthermore, they are adapted on-line with a stable adaptation mechanism based on Lyapunov approach. The RECCo controller does not require any mathematical model of the controlled process but just basic information such as input and output range and the estimated value of the dominant time constant. Due to the problem space normalization the design parameters are fixed. The proposed controller with the same initial design parameters was tested on two different simulation examples. The experimental results show the convergence of the adaptive parameters and the effectiveness of the proposed algorithm
    corecore