14,525 research outputs found

    Floating Point Square Root under HUB Format

    Get PDF
    Unit-Biased (HUB) is an emerging format based on shifting the representation line of the binary numbers by half unit in the last place. The HUB format is specially relevant for computers where rounding to nearest is required because it is performed simply by truncation. From a hardware point of view, the circuits implementing this representation save both area and time since rounding does not involve any carry propagation. Designs to perform the four basic operations have been proposed under HUB format recently. Nevertheless, the square root operation has not been confronted yet. In this paper we present an architecture to carry out the square root operation under HUB format for floating point numbers. The results of this work keep supporting the fact that the HUB representation involves simpler hardware than its conventional counterpart for computers requiring round-to-nearest mode.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Accurate and efficient explicit approximations of the Colebrook flow friction equation based on the Wright omega-function

    Get PDF
    The Colebrook equation is a popular model for estimating friction loss coefficients in water and gas pipes. The model is implicit in the unknown flow friction factor, f. To date, the captured flow friction factor, f, can be extracted from the logarithmic form analytically only in the term of the Lambert W-function. The purpose of this study is to find an accurate and computationally efficient solution based on the shifted Lambert W-function also known as the Wright omega-function. The Wright omega-function is more suitable because it overcomes the problem with the overflow error by switching the fast growing term, y = W (e(x)), of the Lambert W-function to series expansions that further can be easily evaluated in computers without causing overflow run-time errors. Although the Colebrook equation transformed through the Lambert W-function is identical to the original expression in terms of accuracy, a further evaluation of the Lambert W-function can be only approximate. Very accurate explicit approximations of the Colebrook equation that contain only one or two logarithms are shown. The final result is an accurate explicit approximation of the Colebrook equation with a relative error of no more than 0.0096%. The presented approximations are in a form suitable for everyday engineering use, and are both accurate and computationally efficient.Web of Science71art. no. 3

    One-log call iterative solution of the Colebrook equation for flow friction based on Pade polynomials

    Get PDF
    The 80 year-old empirical Colebrook function zeta, widely used as an informal standard for hydraulic resistance, relates implicitly the unknown flow friction factor lambda, with the known Reynolds number Re and the known relative roughness of a pipe inner surface epsilon* ; lambda = zeta(Re, epsilon* ,lambda). It is based on logarithmic law in the form that captures the unknown flow friction factor l in a way that it cannot be extracted analytically. As an alternative to the explicit approximations or to the iterative procedures that require at least a few evaluations of computationally expensive logarithmic function or non-integer powers, this paper offers an accurate and computationally cheap iterative algorithm based on Pade polynomials with only one log-call in total for the whole procedure (expensive log-calls are substituted with Pade polynomials in each iteration with the exception of the first). The proposed modification is computationally less demanding compared with the standard approaches of engineering practice, but does not influence the accuracy or the number of iterations required to reach the final balanced solution.Web of Science117art. no. 182
    corecore