1,269 research outputs found

    Cost-Effective Model Predictive Control Techniques for Modular Multilevel Converters

    Get PDF
    In this thesis, model predictive control (MPC) techniques are investigated with their applications to modular multilevel converters (MMCs). Since normally a large number of submodule (SM) capacitor voltages and gate signals need to be handled in an MMC, the MPC schemes studied in this thesis are employed for determining only the voltage levels of converter arms, while gate signals are subsequently generated by the conventional sorting method. Emphasis is given to inner-loop current control in terms of phase current and circulating current, aiming at performance enhancement and computation reduction. A variable rounding level control (VRLC) approach is developed in this thesis, which is based on a modification of the conventional nearest level control (NLC) scheme: instead of the conventional nearest integer function, a proper rounding function is selected for each arm of the MMC employing the MPC method. As a result, the simplicity of the NLC is maintained while the current regulating ability is improved. The VRLC technique can also be generalized from an MPC perspective. Different current controllers can be considered to generate the arm voltage references as input of the VRLC block, thus refining the control sets of the MPC. Based on the decoupled current models, the accumulated effect of SM capacitor voltage ripples is investigated, revealing that the VRLC strategy may not achieve a proper performance if the accumulated ripple is nontrivial compared to the voltage per level. Two indexes are also proposed for quantifying the current controllability of the VRLC. Benefiting from this analysis, A SM-grouping solution is put forward to apply such MPC techniques to an MMC with a large number of SMs, leading to an equivalent operation of an MMC with much reduced number of SMs, which significantly increases the current regulating capability with reduced complexity. As an example, the SM-grouping VRLC proposal is analyzed and its system design principles are described. This thesis also develops another MPC technique which directly optimizes the cost function using quadratic programming technique. Both a rigorous and a simplified procedure are provided to solve the optimization problem. Compared with the conventional finite control set (FCS)-MPC method which evaluates all voltage level combinations, the proposed scheme presents apparent advantage in terms of calculation cost while achieving similar performance

    Model Predictive Control for Power Converters and Drives: Advances and Trends

    Get PDF
    Model predictive control (MPC) is a very attractive solution for controlling power electronic converters. The aim of this paper is to present and discuss the latest developments in MPC for power converters and drives, describing the current state of this control strategy and analyzing the new trends and challenges it presents when applied to power electronic systems. The paper revisits the operating principle of MPC and identifies three key elements in the MPC strategies, namely the prediction model, the cost function, and the optimization algorithm. This paper summarizes the most recent research concerning these elements, providing details about the different solutions proposed by the academic and industrial communitiesMinisterio de Economia y Competitividad TEC2016-78430-RConsejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) P11-TIC-707

    Improved Predictive Control in Multi-Modular Matrix Converter for Six-Phase Generation Systems

    Get PDF
    Distributed generation systems are emerging as a good solution as part of the response to the world’s growing energy demand. In this context multi-phase wind generation systems are a feasible option. These systems consist of renewable AC sources which requires efficient and controlled power conversion stages. This work proposes a novel predictive current control strategy that takes advantage of a multi-modular matrix converter topology in the power stage of a six-phase generation system. The proposed method uses a coupling signal between the modules to decrease the error and the total harmonic distortion compared to independent control of each module. Experimental results validate the new control strategy showing the improvement regarding the target parameters

    Capacitor Voltage Estimation Scheme with Reduced Number of Sensors for Modular Multilevel Converters

    Get PDF
    This paper presents a new method to measure the voltage across the submodule (SM) capacitors in a modular multilevel converter (MMC). The proposed technique requires only one voltage sensor per arm. This reduces the number of sensors required compared to conventional sensor-based methods. Therefore, the cost and complexity of the system are reduced, which in turn improves the converter’s overall reliability. The proposed method employs an exponentially weighted recursive least square (ERLS) algorithm to estimate the SM capacitor voltages through the measured total arm voltage and the switching patterns of each SM. There is thus no need for extra sensors to measure these control signals as they are directly provided from the controller. The robustness of the proposed method is confirmed via introducing deviations for the capacitance values, dynamic load changes, DC voltage change and start-up transient condition. Simulation and experimentally validated results based on a single-phase MMC show the effectiveness of the proposed method in both, steady-state and dynamic operations

    Mission Profile based System-Level Lifetime Prediction of Modular Multilevel Converters

    Get PDF

    Contrôle avancé des convertisseurs de puissance multi-niveaux pour applications sur réseaux faibles

    Get PDF
    139 p.El advenimiento progresivo de las microrredes que incorporan fuentes de energía renovable está dando lugar a un nuevo paradigma de distribución de la electricidad. Este nuevo planteamiento sirve de interfaz entre consumidores no controlados y fuentes intermitentes, implicando desafíos adicionales en materia de conversión, almacenamiento y gestión de la energía.Los convertidores de potencia se adaptan en consecuencia, en particular con el desarrollo de los convertidores multinivel, que integrando los mismos componentes que sus predecesores y un control más complejo, soportan potencias más altas y aseguran una mejor calidad de la energía.Debido al carácter híbrido de los convertidores de potencia, su control se divide comúnmente en dos partes: por un lado, el control de los objetivos continuos vinculados a la función principal de los convertidores de servir de interfaz, y, por otro, el control discreto de los interruptores de potencia, conocido con el nombre de modulación.En este contexto, las exigencias crecientes en términos de eficiencia, fiabilidad, versatilidad y rendimiento hacen necesaria una mejora de la inteligencia de la estructura de control. Para cumplir conestos requisitos, se propone tratar mediante un solo controlador ambas problemáticas, la vinculada a la función de interfaz de los convertidores y la relacionada con su naturaleza discreta. Esta decisión implica incorporar la no-linealidad de los convertidores de potencia en el controlador, lo que equivale a suprimir el bloque de modulación, que constituye la solución tradicional para linealizar el comportamiento interno de los convertidores. Se adopta un planteamiento de Control Predictivo basado en Modelos (MPC) para abordar la no-linealidad y la gran diversidad de objetivos de control que acompañan a los convertidores de potencia.El algoritmo desarrollado combina teoría de grafos ¿con algoritmos de Dijkstra, A* y otros¿ con un modelo de estado especial para sistemas conmutados al objeto de proporcionar una herramienta potente y universal, capaz de manipular simultáneamente el carácter cuantificado de los interruptores de potencia y el continuo de las entidades interconectadas por el convertidor. Se han obtenido resultados sobre la estabilidad y la controlabilidad de los modelos de estado conmutados aplicados al caso particular de los convertidores de potencia.El controlador así desarrollado y descrito se ha examinado en simulación frente a varios casos y aplicaciones: inversor aislado o conectado a la red, rectificador y convertidor bidireccional. Se ha empleado la misma estructura de control para tres topologías de convertidor multinivel: Neutral-Point Clamped, Flying Capacitor y Cascaded H-Bridge. Al objeto de adaptarse a los cambios citados, lo único que varía en el controlador es el modelo del convertidor adoptado para la predicción, así como la función de coste, que traduce los requisitos de control en un problema de optimización a solucionar por el algoritmo. Un cambio de topología resulta en una modificación del modelo interno, sin impacto sobre la función de coste, mientras que variaciones de esta función son suficientes para adaptarse a la aplicación.Los resultados muestran que el controlador logra actuar directamente sobre los interruptores de potencia en función de diversos requisitos. Los desempeños de la estructura de control propuesta son similares a los de las numerosas estructuras dedicadas a cada uno de los casos estudiados, excepto en el caso de operación en modo rectificador, en el que la versatilidad y rapidez de control obtenidos son particularmente interesantes.En definitiva, el controlador planteado puede emplearse para diferentes aplicaciones, topologías, objetivos y limitaciones. Si bien las estructuras de control lineal tradicionales han de modificarse, a menudo en profundidad, para afrontar diferentes modos de operación o requisitos de control, dichas alteraciones no tienen ningún impacto sobre la arquitectura del controlador MPC obtenido, lo que pone de manifiesto su versatilidad, así como su universalidad, también demostrada por su capacidad para adaptarse a diferentes convertidores de potencia sin modificaciones importantes. Finalmente, la solución propuesta elude por completo la complejidad de la modulación, ofreciendo simplicidad y flexibilidad al diseño del control

    Investigation of FACTS devices to improve power quality in distribution networks

    Get PDF
    Flexible AC transmission system (FACTS) technologies are power electronic solutions that improve power transmission through enhanced power transfer volume and stability, and resolve quality and reliability issues in distribution networks carrying sensitive equipment and non-linear loads. The use of FACTS in distribution systems is still in its infancy. Voltages and power ratings in distribution networks are at a level where realistic FACTS devices can be deployed. Efficient power converters and therefore loss minimisation are crucial prerequisites for deployment of FACTS devices. This thesis investigates high power semiconductor device losses in detail. Analytical closed form equations are developed for conduction loss in power devices as a function of device ratings and operating conditions. These formulae have been shown to predict losses very accurately, in line with manufacturer data. The developed formulae enable circuit designers to quickly estimate circuit losses and determine the sensitivity of those losses to device voltage and current ratings, and thus select the optimal semiconductor device for a specific application. It is shown that in the case of majority carrier devices (such as power MOSFETs), the conduction power loss (at rated current) increases linearly in relation to the varying rated current (at constant blocking voltage), but is a square root of the variable blocking voltage when rated current is fixed. For minority carrier devices (such as a pin diode or IGBT), a similar relationship is observed for varying current, however where the blocking voltage is altered, power losses are derived as a square root with an offset (from the origin). Finally, this thesis conducts a power loss-oriented evaluation of cascade type multilevel converters suited to reactive power compensation in 11kV and 33kV systems. The cascade cell converter is constructed from a series arrangement of cell modules. Two prospective structures of cascade type converters were compared as a case study: the traditional type which uses equal-sized cells in its chain, and a second with a ternary relationship between its dc-link voltages. Modelling (at 81 and 27 levels) was carried out under steady state conditions, with simplified models based on the switching function and using standard circuit simulators. A detailed survey of non punch through (NPT) and punch through (PT) IGBTs was completed for the purpose of designing the two cascaded converters. Results show that conduction losses are dominant in both types of converters in NPT and PT IGBTs for 11kV and 33kV systems. The equal-sized converter is only likely to be useful in one case (27-levels in the 33kV system). The ternary-sequence converter produces lower losses in all other cases, and this is especially noticeable for the 81-level converter operating in an 11kV network
    corecore