1,783 research outputs found

    Computer aided design

    Get PDF
    technical reportThe report is based on the proposal submitted to the National Science Foundation in September 1981, as part of the Coordinated Experimental Computer Science Research Program. The sections covering the budget and biographical data on the senior research personnel have not been included. Also, the section describing the department facilities at the time of the proposal submission is not included, because it would be only of historical interest

    Physiological system modelling

    Get PDF
    Computer graphics has a major impact in our day-to-day life. It is used in diverse areas such as displaying the results of engineering and scientific computations and visualization, producing television commercials and feature films, simulation and analysis of real world problems, computer aided design, graphical user interfaces that increases the communication bandwidth between humans and machines, etc Scientific visualization is a well-established method for analysis of data, originating from scientific computations, simulations or measurements. The development and implementation of the 3Dgen software was developed by the author using OpenGL and C language was presented in this report 3Dgen was used to visualize threedimensional cylindrical models such as pipes and also for limited usage in virtual endoscopy. Using the developed software a model was created using the centreline data input by the user or from the output of some other program, stored in a normal text file. The model was constructed by drawing surface polygons between two adjacent centreline points. The software allows the user to view the internal and external surfaces of the model. The software was designed in such a way that it runs in more than one operating systems with minimal installation procedures Since the size of the software is very small it can be stored in a 1 44 Megabyte floppy diskette. Depending on the processing speed of the PC the software can generate models of any length and size Compared to other packages, 3Dgen has minimal input procedures was able to generate models with smooth bends. It has both modelling and virtual exploration features. For models with sharp bends the software generates an overshoot

    Photogrammetry as a surveying thechnique apllied to heritage constructions recording - avantages and limitations

    Get PDF
    Dissertação de Mestrado Integrado em Arquitetura, com a especialização em Arquitetura apresentada na Faculdade de Arquitetura da Universidade de Lisboa para obtenção do grau de Mestre.A presente dissertação tem por objectivo investigar e evidenciar as vantagens da aplicação da fotogrametria, e possíveis integrações com outros métodos de levantamento, como seja o varrimento laser terrestre, posicionamento por GPS, entre outros, para realizar levantamentos de construções patrimoniais ou eruditas e a respectiva produção de documentação base para viabilizar intervenções de conservação, restauro ou reabilitação. A motivação para a investigação advém da aplicação flexível, versátil, simples, acessível, e baixo-custo da fotogrametria em projectos de levantamento pequenos ou extensos. Tenciona-se igualmente colmatar as desvantagens tradicionais da fotogrametria, nomeadamente a transição entre espaços interiores e exteriores, e registo de espaços estreitos, de difícil acesso, e de geometrias complexas, num único projecto de documentação. Pretende-se ultrapassar estas dificuldades através da utilização máxima das potencialidades da fotogrametria com o uso de imagens olho de peixe e apenas como último recurso utilizar instrumentos complementares. No caso de estudo principal, o Castelo do Convento de Cristo, demonstra-se a aplicação dos métodos investigados. Nos casos de estudo secundários abordam-se problemas parcelares, desde elementos decorativos até à totalidade do edificado: Convento dos Capuchos, em Sintra; Alcáçova e trecho de muralha do Castelo de Sesimbra; Igreja de Stº André, em Mafra; entre outros. Os casos auxiliaram na determinação de procedimentos a generalizar posteriormente. Por fim, propõem-se algoritmos que auxiliam na produção de documentação.ABSTRACT: The present dissertation aims to research and demonstrate the advantages of the application of photogrammetry, and its possible integrations with other methods, such as terrestrial laser scanning, GPS positioning, and among others, to perform surveys of heritage or erudite buildings and respective production of base documentation to enable interventions of conservation, restoration, or rehabilitation. The motivation for researching is due to the flexible, versatile, simple, affordable, and low-cost application of photogrammetry in small and extensive survey projects. It is also intended to overcome the traditional disadvantages of photogrammetry, such as the transition between interior and exterior spaces, and difficulty of recording narrow, hard-to-access, and complex geometric spaces, in a single project. It is intended to overcome such challenges by maximizing the potential uses of photogrammetry with the use of fisheye images and by using other survey instruments as a last resort. In the main case study, the Castle of the Convent of Christ, the application of the investigated methods is demonstrated. In the secondary case studies, partial problems are addressed, ranging from decorative elements to the entire building: Convento dos Capuchos, in Sintra; Citadel and section of a wall of the Castle of Sesimbra; Igreja de St André, in Mafra; among others; The case studies aided in determining general procedures. Finally, algorithms that accelerate the production of documentation are proposed.N/

    The 1984 ASEE-NASA summer faculty fellowship program (aeronautics and research)

    Get PDF
    The 1984 NASA-ASEE Faculty Fellowship Program (SFFP) is reported. The report includes: (1) a list of participants; (2) abstracts of research projects; (3) seminar schedule; (4) evaluation questionnaire; and (5) agenda of visitation by faculty programs committee. Topics discussed include: effects of multiple scattering on laser beam propagation; information management; computer techniques; guidelines for writing user documentation; 30 graphics software; high energy electron and antiproton cosmic rays; high resolution Fourier transform infrared spectrum; average monthly annual zonal and global albedos; laser backscattering from ocean surface; image processing systems; geomorphological mapping; low redshift quasars; application of artificial intelligence to command management systems

    Automatic High-Fidelity 3D Road Network Modeling

    Get PDF
    Many computer applications such as racing games and driving simulations frequently make use of 3D high-fidelity road network models for a variety of purposes. However, there are very few existing methods for automatic generation of 3D realistic road networks, especially for those in the real world. On the other hand, vast road network GIS data have been collected in the past and used by a wide range of applications, such as navigation and evaluation. A method that can automatically produce 3D high-fidelity road network models from 2D real road GIS data will significantly reduce both the labor and time needed to generate these models, and greatly benefit numerous applications involving road networks. Based on a set of selected civil engineering rules for road design, this dissertation research addresses this problem with a novel approach which transforms existing road GIS data that contain only 2D road centerline information into 3D road network models. The proposed method consists of several components, mainly including road GIS data preprocessing, 3D centerline modeling and 3D geometry modeling. During road data preprocessing, topology of the road network is extracted from raw road data as a graph composed of road nodes and road links; road link information is simplified and classified. In the 3D centerline modeling part, the missing height information of the road centerline is inferred based on 2D road GIS data, intersections are extracted from road nodes and the whole road network is represented as road intersections and road segments in parametric forms. Finally, the 3D road centerline models are converted into various 3D road geometry models consisting of triangles and textures in the 3D geometry modeling phase. With this approach, basic road elements such as road segments, road intersections and traffic interchanges are generated automatically to compose sophisticated road networks. Results show that this approach provides a rapid and efficient 3D road modeling method for applications that have stringent requirements on high-fidelity road models

    Forward dynamics of continuum and soft robots: a strain parametrization based approach

    Get PDF
    soumis à IEEE TROIn this article we propose a new solution to the forward dynamics of Cosserat beams with in perspective, its application to continuum and soft robotics manipulation and locomotion. In contrast to usual approaches, it is based on the non-linear parametrization of the beam shape by its strain fields and their discretization on a functional basis of strain modes. While remaining geometrically exact, the approach provides a minimal set of ordinary differential equations in the usual Lagrange matrix form that can be solved with standard explicit time-integrators. Inspired from rigid robotics, the calculation of the matrices of the Lagrange model is performed with a continuous inverse Newton-Euler algorithm. The approach is tested on several numerical benches of non-linear structural statics, as well as further examples illustrating its capabilities for dynamics

    In the Space and in the Time. Representing Architectural Ideas by Digital Animation

    Get PDF
    Since the late Nineties, digital architectural animation emerged as one of the main methods for representing design ideas. The ‘spectacle of architecture' created by digital representation of space and time, arose as one of the most effective media for the prefiguration of architectural design. The great complexity of architectural video's production quickly led to the birth of new professionals and creative companies specialized in modelling, rendering, animation, graphics, montage, editing and post production. The author investigates on the methods, techniques and languages of the fourth-dimensional representation of architecture, almost unexplored area of research thus far, by relating them with the architects' personal poetics. To support observations, discoveries and theses, this paper provides analysis and critics of several case studies and traces an ideal interpretative path, considering both to the changing technologies and the emerging specific languages

    AutoGraff: towards a computational understanding of graffiti writing and related art forms.

    Get PDF
    The aim of this thesis is to develop a system that generates letters and pictures with a style that is immediately recognizable as graffiti art or calligraphy. The proposed system can be used similarly to, and in tight integration with, conventional computer-aided geometric design tools and can be used to generate synthetic graffiti content for urban environments in games and in movies, and to guide robotic or fabrication systems that can materialise the output of the system with physical drawing media. The thesis is divided into two main parts. The first part describes a set of stroke primitives, building blocks that can be combined to generate different designs that resemble graffiti or calligraphy. These primitives mimic the process typically used to design graffiti letters and exploit well known principles of motor control to model the way in which an artist moves when incrementally tracing stylised letter forms. The second part demonstrates how these stroke primitives can be automatically recovered from input geometry defined in vector form, such as the digitised traces of writing made by a user, or the glyph outlines in a font. This procedure converts the input geometry into a seed that can be transformed into a variety of calligraphic and graffiti stylisations, which depend on parametric variations of the strokes

    Vector offset operators for deformable organic objects.

    Get PDF
    Many natural materials and most of living tissues exhibit complex deformable behaviours that may be characteriseda s organic. In computer animation, deformable organic material behaviour is needed for the development of characters and scenes based on living creatures and natural phenomena. This study addresses the problem of deformable organic material behaviour in computer animated objects. The focus of this study is concentrated on problems inherent in geometry based deformation techniques, such as non-intuitive interaction and difficulty in achieving realism. Further, the focus is concentrated on problems inherent in physically based deformation techniques, such as inefficiency and difficulty in enforcing spatial and temporal constraints. The main objective in this study is to find a general and efficient solution to interaction and animation of deformable 3D objects with natural organic material properties and constrainable behaviour. The solution must provide an interaction and animation framework suitable for the creation of animated deformable characters. An implementation of physical organic material properties such as plasticity, elasticity and iscoelasticity can provide the basis for an organic deformation model. An efficient approach to stress and strain control is introduced with a deformation tool named Vector Offset Operator. Stress / strain graphs control the elastoplastic behaviour of the model. Strain creep, stress relaxation and hysteresis graphs control the viscoelastic behaviour of the model. External forces may be applied using motion paths equipped with momentum / time graphs. Finally, spatial and temporal constraints are applied directly on vector operators. The suggested generic deformation tool introduces an intermediate layer between user interaction, deformation, elastoplastic and viscoelastic material behaviour and spatial and temporal constraints. This results in an efficient approach to deformation, frees object representation from deformation, facilitates the application of constraints and enables further development

    Appearance Modelling and Reconstruction for Navigation in Minimally Invasive Surgery

    Get PDF
    Minimally invasive surgery is playing an increasingly important role for patient care. Whilst its direct patient benefit in terms of reduced trauma, improved recovery and shortened hospitalisation has been well established, there is a sustained need for improved training of the existing procedures and the development of new smart instruments to tackle the issue of visualisation, ergonomic control, haptic and tactile feedback. For endoscopic intervention, the small field of view in the presence of a complex anatomy can easily introduce disorientation to the operator as the tortuous access pathway is not always easy to predict and control with standard endoscopes. Effective training through simulation devices, based on either virtual reality or mixed-reality simulators, can help to improve the spatial awareness, consistency and safety of these procedures. This thesis examines the use of endoscopic videos for both simulation and navigation purposes. More specifically, it addresses the challenging problem of how to build high-fidelity subject-specific simulation environments for improved training and skills assessment. Issues related to mesh parameterisation and texture blending are investigated. With the maturity of computer vision in terms of both 3D shape reconstruction and localisation and mapping, vision-based techniques have enjoyed significant interest in recent years for surgical navigation. The thesis also tackles the problem of how to use vision-based techniques for providing a detailed 3D map and dynamically expanded field of view to improve spatial awareness and avoid operator disorientation. The key advantage of this approach is that it does not require additional hardware, and thus introduces minimal interference to the existing surgical workflow. The derived 3D map can be effectively integrated with pre-operative data, allowing both global and local 3D navigation by taking into account tissue structural and appearance changes. Both simulation and laboratory-based experiments are conducted throughout this research to assess the practical value of the method proposed
    corecore