58 research outputs found

    Precoder design for space-time coded systems over correlated Rayleigh fading channels using convex optimization

    Get PDF
    A class of computationally efficient linear precoders for space-time block coded multiple-input multiple-output wireless systems is derived based on the minimization of the exact symbol error rate (SER) and its upper bound. Both correlations at the transmitter and receiver are assumed to be present, and only statistical channel state information in the form of the transmit and receive correlation matrices is assumed to be available at the transmitter. The convexity of the design based on SER minimization is established and exploited. The advantage of the developed technique is its low complexity. We also find various relationships of the proposed designs to the existing precoding techniques, and derive very simple closed-form precoders for special cases such as two or three receive antennas and constant receive correlation. The numerical simulations illustrate the excellent SER performance of the proposed precoders

    Optimal diversity performance of space time block codes in correlated distributed MIMO channels

    Get PDF
    This paper investigates optimal transmission of space-time block codes (STBCs) in distributed multiple-input multiple-output (D-MIMO) Rayleigh fading channels. The optimal diversity performance is achieved through transmit power allocation implemented at the receiver based on transmit and receive correlations to minimize the average symbol error rate (SER). Evaluation of SER performance of uncoded STBCs over a generalized distributed antenna (DA) topology is first presented, with exact analytical SER expressions derived for MQAM and MPSK symbols. SER upper bounds are also derived, based on which two criteria for complexity reduced antenna subset selection with sub-optimal power allocation are further proposed, whose performance approaches optimal over correlated D-MIMO channels. Moreover, a novel simplified but close SER approximation scheme is devised to significantly facilitate optimal SER calculation. We continue to thoroughly analyze how the optimal diversity is affected by large scale fading, targeted data rate, antenna correlations and transmit power. Finally, we develop a surprisingly close and useful analogy between open loop STBCs in co-located MIMO and optimal STBCs in D-MEVIO with minimum feedback (i.e., n bits for n DAs in Criterion 2 with power allocation scheme 2 which equally allocates power to the selected DAs). Extensive simulation results have been presented to demonstrate the effectiveness of our analysis. © 2008 IEEE.published_or_final_versio

    Linear space-time modulation in multiple-antenna channels

    Get PDF
    This thesis develops linear space–time modulation techniques for (multi-antenna) multi-input multi-output (MIMO) and multiple-input single-output (MISO) wireless channels. Transmission methods tailored for such channels have recently emerged in a number of current and upcoming standards, in particular in 3G and "beyond 3G" wireless systems. Here, these transmission concepts are approached primarily from a signal processing perspective. The introduction part of the thesis describes the transmit diversity concepts included in the WCDMA and cdma2000 standards or standard discussions, as well as promising new transmission methods for MIMO and MISO channels, crucial for future high data-rate systems. A number of techniques developed herein have been adopted in the 3G standards, or are currently being proposed for such standards, with the target of improving data rates, signal quality, capacity or system flexibility. The thesis adopts a model involving matrix-valued modulation alphabets, with different dimensions usually defined over space and time. The symbol matrix is formed as a linear combination of symbols, and the space-dimension is realized by using multiple transmit and receive antennas. Many of the transceiver concepts and modulation methods developed herein provide both spatial multiplexing gain and diversity gain. For example, full-diversity full-rate schemes are proposed where the symbol rate equals the number of transmit antennas. The modulation methods are developed for open-loop transmission. Moreover, the thesis proposes related closed-loop transmission methods, where space–time modulation is combined either with automatic retransmission or multiuser scheduling.reviewe

    Outage Probability and Outage-Based Robust Beamforming for MIMO Interference Channels with Imperfect Channel State Information

    Full text link
    In this paper, the outage probability and outage-based beam design for multiple-input multiple-output (MIMO) interference channels are considered. First, closed-form expressions for the outage probability in MIMO interference channels are derived under the assumption of Gaussian-distributed channel state information (CSI) error, and the asymptotic behavior of the outage probability as a function of several system parameters is examined by using the Chernoff bound. It is shown that the outage probability decreases exponentially with respect to the quality of CSI measured by the inverse of the mean square error of CSI. Second, based on the derived outage probability expressions, an iterative beam design algorithm for maximizing the sum outage rate is proposed. Numerical results show that the proposed beam design algorithm yields better sum outage rate performance than conventional algorithms such as interference alignment developed under the assumption of perfect CSI.Comment: 41 pages, 14 figures. accepted to IEEE Transactions on Wireless Communication

    Multi-user MIMO wireless communications

    Get PDF

    Multi-user MIMO wireless communications

    Get PDF
    Mehrantennensysteme sind auf Grund der erhöhten Bandbreiteneffizienz und Leistung eine Schlüsselkomponente von Mobilfunksystemen der Zukunft. Diese ermöglichen das gleichzeitige Senden von mehreren, räumlich getrennten Datenströmen zu verschiedenen Nutzern. Die zentrale Fragestellung in der Praxis ist, ob der ursprünglich vorausgesagte Kapazitätsgewinn in realistischen Szenarios erreicht wird und welche spezifischen Gewinne durch zusätzliche Antennen und das Ausnutzen von Kanalkenntnis am Sender und Empfänger erzielt werden, was andererseits einen Zuwachs an Overhead oder nötiger Rechenleistung bedeutet. In dieser Arbeit werden neue lineare und nicht-lineare MU-MIMO Precoding- Verfahren vorgestellt. Der verfolgte Ansatz zur Bestimmung der Precoding- Matrizen ist allgemein anwendbar und die entstandenen Algorithmen können zur Optimierung von verschiedenen Kriterien mit beliebig vielen Antennen an der Mobilstation eingesetzt werden. Das wurde durch die Berechnung der Precoding- Matrix in zwei Schritten erreicht. Im ersten Schritt wird die Überschneidung der Zeilenräume minimiert, die durch die effektiven Kanalmatrizen verschiedener Nutzer aufgespannt werden. Basierend auf mehreren parallelen Einzelnutzer-MIMO- Kanälen wird im zweiten Schritt die Systemperformanz bezüglich bestimmter Kriterien optimiert. Aus der gängigen Literatur ist bereits bekannt, dass für Nutzer mit nur einer Antenne das MMSE Kriterium beim precoding optimal aber nicht bei Nutzern mit mehreren Antennen. Deshalb werden in dieser Arbeit zwei neue Mehrnutzer MIMO Strategien vorgestellt, die vom MSE Kriterium abgeleitet sind, nämlich sukzessives MMSE und RBD. Bei der sukzessiven Verarbeitung mit einer entsprechenden Anpassung der Sendeleistungsverteilung kann die volle Diversität des Systems ausgeschöpft werden. Die Kapazität nähert sich dabei der maximalen Summenrate des Systems an. Bei gemeinsamer Verarbeitung der MIMO Kanäle wird unabhängig vom Grad der Mehrnutzerinterferenz die maximale Diversität erreicht. Die genannten Techniken setzen entweder eine aktuelle oder eine über einen längeren Zeitraum gemittelte Kanalkenntnis voraus. Aus diesem Grund müssen die Auswirkungen von Kanal-Schätzfehlern und Einflüsse des Transceiver Front-Ends auf die Verfahren näher untersucht werden. Für eine weitergehende Abschätzung der Mehrantennensysteme muss die Performanz des Gesamtsystems untersucht werden, da viele Einflüsse auf die räumliche Signalverarbeitung bei Betrachtung eines einzelnen Links nicht erkennbar sind. Es wurde gezeigt, dass mit MIMO Precoding Strategien ein Vielfaches der Datenrate eines Systems mit nur einer Antenne erzielt werden kann, während der Overhead durch Pilotsymbole und Steuersignale nur geringfügig zunimmt.Multiple-input, multiple-output (MIMO) systems are a key component of future wireless communication systems, because of their promising improvement in terms of performance and bandwidth efficiency. An important research topic is the study of multi-user (MU) MIMO systems. Such systems have the potential to combine the high throughput achievable with MIMO processing with the benefits of space division multiple access (SDMA). The main question from a practical standpoint is whether the initially predicted capacity gains can be obtained in more realistic scenarios and what specific gains result from adding more antennas and overhead or computational power to obtain channel state information (CSI) at the transceivers. In this thesis we introduce new linear and non-linear MU MIMO processing techniques. The approach used for the design of the precoding matrix is general and the resulting algorithms can address several optimization criteria with an arbitrary number of antennas at the user terminals (UTs). This is achieved by designing the precoding matrices in two steps. In the first step we minimize the overlap of the row spaces spanned by the effective channel matrices of different users. In the next step, we optimize the system performance with respect to the specific optimization criterion assuming a set of parallel single-user MIMO channels. As it was previously reported in the literature, minimum mean-squared-error (MMSE) processing is optimum for single-antenna UTs. However, MMSE suffers from a performance loss when users are equipped with more than one antenna. The two MU MIMO processing techniques that result from the two different MSE criteria that are proposed in this thesis are successive MMSE and regularized block diagonalization. By iterating the closed form solution with appropriate power loading we are able to extract the full diversity in the system and empirically approach the maximum sum-rate capacity in case of high multi-user interference. Joint processing of MIMO channels yields maximum diversity regardless of the level of multi-user interference. As these techniques rely on the fact that there is either instantaneous or long- term CSI available at the base station to perform precoding and decoding, it was very important to investigate the influence of the transceiver front-end imperfections and channel estimation errors on their performance. For a comprehensive assessment of multi-antenna techniques, it is mandatory to consider the performance at system level, since many effects of spatial processing are not tractable at the link level. System level investigations have shown that MU MIMO precoding techniques provide several times higher data rates than single-input single-output systems with only slightly increased pilot and control overhead
    • …
    corecore