514 research outputs found

    Study of the performance of fault-tolerant multi-level inverter included in shunt active power filter

    Get PDF
    Nowadays, the large number of shunt active power filters (SAPF) is installed in many grid networks to eliminate the source currents harmonics and enhance power quality. These filters are installed in different places according to the filtration requirements. The connection between SAPF and grid network has a negative effect during the open-circuit fault of the insulated gate bipolar transistor (IGBT) switch of the SAPF. This paper proposes the application of the new diagnostic method based on the trigonometric circle and mean value variations techniques to the early detection and precise location of the open-circuit fault of the IGBT switches, and the inclusion of the modified reconfigurable inverter topology to allow the perfect continuity of the filter currents, and improve the diagnostic of the open-circuit fault. A single-sided amplitude spectrum technique (SSAS) is applied on the source currents to get the THDi% value. The obtained simulation results prove, the great success of the proposed diagnostic method, the ability of the modified reconfigurable inverter to be adapted to the grid network, the short response time between the diagnosis and the reconfiguration process is about 7 ms which is very sufficient to guarantee the rapid continuity of the shunt active power filter

    Characteristics Analysis and Measurement of Inverter-Fed Induction Motors for Stator and Rotor Fault Detection

    Get PDF
    Inverter-fed induction motors (IMs) contain a serious of current harmonics, which become severer under stator and rotor faults. The resultant fault components in the currents affect the monitoring of the motor status. With this background, the fault components in the electromagnetic torque under stator faults considering harmonics are derived in this paper, and the fault components in current harmonics under rotor faults are analyzed. More importantly, the monitoring based on the fault characteristics (both in the torque and current) is proposed to provide reliable stator and rotor fault diagnosis. Specifically, the fault components induced by stator faults in the electromagnetic torque are discussed in this paper, and then, fault components are characterized in the torque spectrum to identify stator faults. To achieve so, a full-order flux observer is adopted to calculate the torque. On the other hand, under rotor faults, the sidebands caused by time and space harmonics in the current are analyzed and exploited to recognize rotor faults, being the motor current signature analysis (MCSA). Experimental tests are performed on an inverter-fed 2.2 kW/380 V/50 Hz IM, which verifies the analysis and the effectiveness of the proposed fault diagnosis methods of inverter-fed IMs

    Fault Diagnosis and Condition Monitoring of Power Electronic Components Using Spread Spectrum Time Domain Reflectometry (SSTDR) and the Concept of Dynamic Safe Operating Area (SOA)

    Get PDF
    Title from PDF of title page viewed April 1, 2021Dissertation advisors: Faisal Khan and Yong ZengVitaIncludes bibliographical references ( page 117-132)Thesis (Ph.D.)--School of Computing and Engineering and Department of Mathematics and Statistics. University of Missouri--Kansas City, 2021Fault diagnosis and condition monitoring (CM) of power electronic components with a goal of improving system reliability and availability have been one of the major focus areas in the power electronics field in the last decades. Power semiconductor devices such as metal oxide semiconductor field-effect transistor (MOSFET) and insulated-gate bipolar transistor (IGBT) are considered to be the most fragile element of the power electronic systems and their reliability degrades with time due to mechanical and thermo-electrical stresses, which ultimately leads to a complete failure of the overall power conversion systems. Therefore, it is important to know the present state of health (SOH) of the power devices and the remaining useful life (RUL) of a power converter in order to perform preventive scheduled maintenance, which will eventually lead to increased system availability and reduced cost. In conventional practice, device aging and lifetime prediction techniques rely on the estimation of the meantime to failure (MTTF), a value that represents the expected lifespan of a device. MTTF predicts expected lifespan, but cannot adequately predict failures attributed to unusual circumstances or continuous overstress and premature degradation. This inability is due in large part to the fact that it considers the device safe operating area (SOA) or voltage and current ride-through capability to be independent of SOH. However, we experimentally proved that SOA of any semiconductor device goes down with the increased level of aging, and therefore, the probability of occurrence of over-voltage/current situation increases. As a result, the MTTF of the device as well as the overall converter reliability reduces with aging. That said, device degradation can be estimated by accomplishing an accurate online degradation monitoring tool that will determine the dynamic SOA. The correlation between aging and dynamic SOA gives us the useful remaining life of the device or the availability of a circuit. For this monitoring tool, spread spectrum time domain reflectometry (SSTDR) has been proposed and was successfully implemented in live power converters. In SSTDR, a high-frequency sine-modulated pseudo-noise sequence (SMPNS) is sent through the system, and reflections from age-related impedance discontinuities return to the test end where they are analyzed. In the past, SSTDR has been successfully used for device degradation detection in power converters while running at static conditions. However, the rapid variation in impedance throughout the entire live converter circuit caused by the fast-switching operation makes CM more challenging while using SSTDR. The algorithms and techniques developed in this project have overcome this challenge and demonstrated that the SSTDR test data are consistent with the aging of the power devices and do not affect the switching performance of the modulation process even the test signal is applied across the gate-source interface of the power MOSFET. This implies that the SSTDR technique can be integrated with the gate driver module, thereby creating a new platform for an intelligent gate-driver architecture (IGDA) that enables real-time health monitoring of power devices while performing features offered by a commercially available driver. Another application of SSTDR in power electronic systems is the ground fault prediction and detection technique for PV arrays. Protecting PV arrays from ground faults that lead to fire hazards and power loss is imperative to maintaining safe and effective solar power operations. Unlike many standard detection methods, SSTDR does not depend on fault current, therefore, can be implemented for testing ground faults at night or low illumination. However, wide variation in impedance throughout different materials and interconnections makes fault location more challenging than fault detection. This barrier was surmounted by the SSTDR-based fault detection algorithm developed in this project. The proposed algorithm was accounted for any variation in the number of strings, fault resistance, and the number of faults. In addition to its general utility for fault detection, the proposed algorithm can identify the location of multiple faults using only a single measurement point, thereby working as a preventative measure to protect the entire system at a reduced cost. Within the scope of the research work on SSTDR-based fault diagnosis and CM of power electronic components, a cell-level SOH measurement tool has been proposed that utilizes SSTDR to detect the location and aging of individual degraded cells in a large series-parallel connected Li-ion battery pack. This information of cell level SOH along with the respective cell location is critical to calculating the SOH of a battery pack and its remaining useful lifetime since the initial SOH of Li-ion cells varies under different manufacturing processes and operating conditions, causing them to perform inconsistently and thereby affect the performance of the entire battery pack in real-life applications. Unfortunately, today’s BMS considers the SOH of the entire battery pack/cell string as a single SOH and therefore, cannot monitor the SOH at the cell level. A healthy battery string has a specific impedance between the two terminals, and any aged cell in that string will change the impedance value. Since SSTDR can characterize the impedance change in its propagation path along with its location, it can successfully locate the degraded cell in a large battery pack and thereby, can prevent premature failure and catastrophic danger by performing scheduled maintenance.Introduction -- Background study and literature review -- Fundamentals of Spread Spectrum Time Domain Reflectometry (SSTDR): A new method for testing electronics live -- Accelerated aging test bench: design and implementation -- Condition monitoring of power switching in live power switching devices in live power electronic converters using SSTDR -- An irradiance-independent, robust ground-fault detection scheme for PV arrays based on SSTDR -- Detection of degraded/aged cell in a LI-Ion battery pack using SSTDR -- Dynamiv safe operating area (SOA) of power semiconductor devices -- Conclusion and future researc

    A novel fault-detection methodology of proposed reduced switch MLI fed induction motor drive using discrete wavelet transforms

    Get PDF
    Induction motors are typically promoted in industrial applications by adopting energy-efficient power-electronic drive technology. Multilevel inverters (MLI) have been widely recognized in recent days for high-power, medium-voltage-efficient drives. There has been vital interest in forming novel multilevel inverters with reduced switching elements. The newly proposed reduced-switch five-level inverter topology extends with fewer switches, low dv/dt stress, high efficiency, and so on, over the formal multilevel inverter topologies. The multilevel inverter's reputation is greatly affected due to several faults on switching elements and complex switching sequences. In this paper, a novel fault identification process is evaluated in both healthy and faulty conditions using discrete-wavelet transform analysis. The discrete wavelet transform utilizes the multi-resolution analysis with a feature extraction methodology acquired for fault identification over the classical methods. A novel fault identification scheme is implemented on reduced-switch five-level MLI topology using the Matlab/Simulink platform to increase the drive system's reliability. The effectiveness of simulation outcomes is illustrated with proper comparisons. The pro posed topology's hardware model is implemented using a dSPACE DS1103 real-time digital controller and the results of the experiment are presented

    Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform

    Get PDF
    Publisher Copyright: © 2023 by the authors.This article deals with fault detection and the classification of incipient and intermittent open-transistor faults in grid-connected three-level T-type inverters. Normally, open-transistor detection algorithms are developed for permanent faults. Nevertheless, the difficulty to detect incipient and intermittent faults is much greater, and appropriate methods are required. This requirement is due to the fact that over time, its repetition may lead to permanent failures that may lead to irreversible degradation. Therefore, the early detection of these failures is very important to ensure the reliability of the system and avoid unscheduled stops. For diagnosing these incipient and intermittent faults, a novel method based on a Walsh transform combined with a multilayer perceptron (MLP)-based classifier is proposed in this paper. This non-classical approach of using the Walsh transform not only allows accurate detections but is also very fast. This last characteristic is very important in these applications due to their practical implementation. The proposed method includes two main steps. First, the acquired AC currents are used by the control system and processed using the Walsh transform. This results in detailed information used to potentially identify open-transistor faults. Then, such information is processed using the MLP to finally determine whether a fault is present or not. Several experiments are conducted with different types of incipient transistor faults to create a relevant dataset.publishersversionpublishe

    Design and Control of Power Converters 2020

    Get PDF
    In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields

    Control strategies for Brushless DC motors

    Get PDF
    Tato diplomová práce se zabývá strategiemi řízení, které jsou dostupné pro bezkartáčové DC motory, a které mohou být použity pro řízení rychlosti pohonů elektrických vozidel. Úkolem práce je studium rozličných řídicích algoritmů, nalezení způsobů, jak optimalizovat jejich výkon, a zároveň simulovat jejich chování pro ověření jejich vlastností. Závěrečná etapa práce spočívá v přípravě implementovatelného řídicího algoritmu, který je poté spuštěn na laboratorním stanovišti s aktivním řídicím systémem založeným na zpětné vazbě PID regulátoru a uživatelského rozhraní (HMI) pro snadnou interakci v průběhu testu.Master's Thesis researching the various control strategies available for BLDC motor control that can then be employed in the speed control of electric vehicle drive systems. The task involved studying the various control algorithms, finding ways to optimize their performance and simulate them as a proof of concept. The final stage of the thesis involved the preparation of an implementable control algorithm that was then run on a test bench with an active PID feedback-based control system and HMI for easy interaction in runtime

    On-line Condition Monitoring, Fault Detection and Diagnosis in Electrical Machines and Power Electronic Converters

    Get PDF
    The objective of this PhD research is to develop robust, and non-intrusive condition monitoring methods for induction motors fed by closed-loop inverters. The flexible energy forms synthesized by these connected power electronic converters greatly enhance the performance and expand the operating region of induction motors. They also significantly alter the fault behavior of these electric machines and complicate the fault detection and protection. The current state of the art in condition monitoring of power-converter-fed electric machines is underdeveloped as compared to the maturing condition monitoring techniques for grid-connected electric machines. This dissertation first investigates the stator turn-to-turn fault modelling for induction motors (IM) fed by a grid directly. A novel and more meaningful model of the motor itself was developed and a comprehensive study of the closed-loop inverter drives was conducted. A direct torque control (DTC) method was selected for controlling IM’s electromagnetic torque and stator flux-linkage amplitude in industrial applications. Additionally, a new driver based on DTC rules, predictive control theory and fuzzy logic inference system for the IM was developed. This novel controller improves the performance of the torque control on the IM as it reduces most of the disadvantages of the classical and predictive DTC drivers. An analytical investigation of the impacts of the stator inter-turn short-circuit of the machine in the controller and its reaction was performed. This research sets a based knowledge and clear foundations of the events happening inside the IM and internally in the DTC when the machine is damaged by a turn fault in the stator. This dissertation also develops a technique for the health monitoring of the induction machine under stator turn failure. The developed technique was based on the monitoring of the off-diagonal term of the sequence component impedance matrix. Its advantages are that it is independent of the IM parameters, it is immune to the sensors’ errors, it requires a small learning stage, compared with NN, and it is not intrusive, robust and online. The research developed in this dissertation represents a significant advance that can be utilized in fault detection and condition monitoring in industrial applications, transportation electrification as well as the utilization of renewable energy microgrids. To conclude, this PhD research focuses on the development of condition monitoring techniques, modelling, and insightful analyses of a specific type of electric machine system. The fundamental ideas behind the proposed condition monitoring technique, model and analysis are quite universal and appeals to a much wider variety of electric machines connected to power electronic converters or drivers. To sum up, this PhD research has a broad beneficial impact on a wide spectrum of power-converter-fed electric machines and is thus of practical importance
    corecore