572 research outputs found

    Which heuristics can aid financial-decision-making?

    Get PDF
    © 2015 Elsevier Inc. We evaluate the contribution of Nobel Prize-winner Daniel Kahneman, often in association with his late co-author Amos Tversky, to the development of our understanding of financial decision-making and the evolution of behavioural finance as a school of thought within Finance. Whilst a general evaluation of the work of Kahneman would be a massive task, we constrain ourselves to a more narrow discussion of his vision of financial-decision making compared to a possible alternative advanced by Gerd Gigerenzer along with numerous co-authors. Both Kahneman and Gigerenzer agree on the centrality of heuristics in decision making. However, for Kahneman heuristics often appear as a fall back when the standard von-Neumann-Morgenstern axioms of rational decision-making do not describe investors' choices. In contrast, for Gigerenzer heuristics are simply a more effective way of evaluating choices in the rich and changing decision making environment investors must face. Gigerenzer challenges Kahneman to move beyond substantiating the presence of heuristics towards a more tangible, testable, description of their use and disposal within the ever changing decision-making environment financial agents inhabit. Here we see the emphasis placed by Gigerenzer on how context and cognition interact to form new schemata for fast and frugal reasoning as offering a productive vein of new research. We illustrate how the interaction between cognition and context already characterises much empirical research and it appears the fast and frugal reasoning perspective of Gigerenzer can provide a framework to enhance our understanding of how financial decisions are made

    Rationality the fast and frugal way: Introduction

    Get PDF

    FFTrees: A toolbox to create, visualize, and evaluate fast-and-frugal decision trees

    Get PDF
    Fast-and-frugal trees (FFTs) are simple algorithms that facilitate efficient and accurate decisions based on limited information. But despite their successful use in many applied domains, there is no widely available toolbox that allows anyone to easily create, visualize, and evaluate FFTs. We fill this gap by introducing the R package FFTrees. In this paper, we explain how FFTs work, introduce a new class of algorithms called fan for constructing FFTs, and provide a tutorial for using the FFTrees package. We then conduct a simulation across ten real-world datasets to test how well FFTs created by FFTrees can predict data. Simulation results show that FFTs created by FFTrees can predict data as well as popular classification algorithms such as regression and random forests, while remaining simple enough for anyone to understand and use

    More is not always better : The benefits of cognitive limits

    Get PDF

    The bias bias

    Get PDF
    AbstractIn marketing and finance, surprisingly simple models sometimes predict more accurately than more complex, sophisticated models. Here, we address the question of when and why simple models succeed — or fail — by framing the forecasting problem in terms of the bias–variance dilemma. Controllable error in forecasting consists of two components, the “bias” and the “variance”. We argue that the benefits of simplicity are often overlooked because of a pervasive “bias bias”: the importance of the bias component of prediction error is inflated, and the variance component of prediction error, which reflects an oversensitivity of a model to different samples from the same population, is neglected. Using the study of cognitive heuristics, we discuss how to reduce variance by ignoring weights, attributes, and dependencies between attributes, and thus make better decisions. Bias and variance, we argue, offer a more insightful perspective on the benefits of simplicity than Occam’'s razor

    Five principles for studying people's use of heuristics

    Get PDF
    Abstract: The fast and frugal heuristics framework assumes that people rely on an adaptive toolbox of simple decision strategies—called heuristics—to make inferences, choices, estimations, and other decisions. Each of these heuristics is tuned to regularities in the structure of the task environment and each is capable of exploiting the ways in which basic cognitive capacities work. In doing so, heuristics enable adaptive behavior. In this article, we give an overview of the framework and formulate five principles that should guide the study of people’s adaptive toolbox. We emphasize that models of heuristics should be (i) precisely defined; (ii) tested comparatively; (iii) studied in line with theories of strategy selection; (iv) evaluated by how well they predict new data; and (vi) tested in the real world in addition to the laboratory. Key words: fast and frugal heuristics; experimental design; model testing As we write this article, international financial markets are in turmoil. Large banks are going bankrupt almost daily. It is a difficult situation for financial decision makers — regardless of whether they are lay investors trying to make small-scale profits here and there or professionals employed by the finance industry. To safeguard their investments, these decision makers need to be able to foresee uncertain future economic developments, such as which investments are likely to be the safest and which companies are likely to crash next. In times of rapid waves of potentially devastating financial crashes, these informed bets must often be made quickly, with little time for extensive information search or computationally demanding calculations of likely future returns. Lay stock traders in particular have to trust the contents of their memories, relying on incomplete, imperfec

    Learning backward induction: a neural network agent approach

    Get PDF
    This paper addresses the question of whether neural networks (NNs), a realistic cognitive model of human information processing, can learn to backward induce in a two-stage game with a unique subgame-perfect Nash equilibrium. The NNs were found to predict the Nash equilibrium approximately 70% of the time in new games. Similarly to humans, the neural network agents are also found to suffer from subgame and truncation inconsistency, supporting the contention that they are appropriate models of general learning in humans. The agents were found to behave in a bounded rational manner as a result of the endogenous emergence of decision heuristics. In particular a very simple heuristic socialmax, that chooses the cell with the highest social payoff explains their behavior approximately 60% of the time, whereas the ownmax heuristic that simply chooses the cell with the maximum payoff for that agent fares worse explaining behavior roughly 38%, albeit still significantly better than chance. These two heuristics were found to be ecologically valid for the backward induction problem as they predicted the Nash equilibrium in 67% and 50% of the games respectively. Compared to various standard classification algorithms, the NNs were found to be only slightly more accurate than standard discriminant analyses. However, the latter do not model the dynamic learning process and have an ad hoc postulated functional form. In contrast, a NN agent’s behavior evolves with experience and is capable of taking on any functional form according to the universal approximation theorem.
    • …
    corecore