79 research outputs found

    On a generalization of iterated and randomized rounding

    Get PDF
    We give a general method for rounding linear programs that combines the commonly used iterated rounding and randomized rounding techniques. In particular, we show that whenever iterated rounding can be applied to a problem with some slack, there is a randomized procedure that returns an integral solution that satisfies the guarantees of iterated rounding and also has concentration properties. We use this to give new results for several classic problems where iterated rounding has been useful

    Approximating Minimum-Cost k-Node Connected Subgraphs via Independence-Free Graphs

    Full text link
    We present a 6-approximation algorithm for the minimum-cost kk-node connected spanning subgraph problem, assuming that the number of nodes is at least k3(k1)+kk^3(k-1)+k. We apply a combinatorial preprocessing, based on the Frank-Tardos algorithm for kk-outconnectivity, to transform any input into an instance such that the iterative rounding method gives a 2-approximation guarantee. This is the first constant-factor approximation algorithm even in the asymptotic setting of the problem, that is, the restriction to instances where the number of nodes is lower bounded by a function of kk.Comment: 20 pages, 1 figure, 28 reference

    Hierarchical Network Design

    Get PDF

    On a generalization of iterated and randomized rounding

    Get PDF
    We give a general method for rounding linear programs that combines the commonly used iterated rounding and randomized rounding techniques. In particular, we show that whenever iterated rounding can be applied to a problem with some slack, there is a randomized procedure that returns an integral solution that satisfies the guarantees of iterated rounding and also has concentration properties. We use this to give new results for several classic problems such as rounding column-sparse LPs, makespan minimization on unrelated machines, degree-bounded spanning trees and multi-budgeted matchings

    Iterative Rounding Approximation Algorithms in Network Design

    Get PDF
    Iterative rounding has been an increasingly popular approach to solving network design optimization problems ever since Jain introduced the concept in his revolutionary 2-approximation for the Survivable Network Design Problem (SNDP). This paper looks at several important iterative rounding approximation algorithms and makes improvements to some of their proofs. We generalize a matrix restatement of Nagarajan et al.'s token argument, which we can use to simplify the proofs of Jain's 2-approximation for SNDP and Fleischer et al.'s 2-approximation for the Element Connectivity (ELC) problem. Lau et al. show how one can construct a (2,2B + 3)-approximation for the degree bounded ELC problem, and this thesis provides the proof. We provide some structural results for basic feasible solutions of the Prize-Collecting Steiner Tree problem, and introduce a new problem that arises, which we call the Prize-Collecting Generalized Steiner Tree problem

    Polyhedral techniques in combinatorial optimization II: computations

    Get PDF
    Combinatorial optimization problems appear in many disciplines ranging from management and logistics to mathematics, physics, and chemistry. These problems are usually relatively easy to formulate mathematically, but most of them are computationally hard due to the restriction that a subset of the variables have to take integral values. During the last two decades there has been a remarkable progress in techniques based on the polyhedral description of combinatorial problems. leading to a large increase in the size of several problem types that can be solved. The basic idea behind polyhedral techniques is to derive a good linear formulation of the set of solutions by identifying linear inequalities that can be proved to be necessary in the description of the convex hull of feasible solutions. Ideally we can then solve the problem as a linear programming problem, which can be done efficiently. The purpose of this manuscript is to give an overview of the developments in polyhedral theory, starting with the pioneering work by Dantzig, Fulkerson and Johnson on the traveling salesman problem, and by Gomory on integer programming. We also present some modern applications, and computational experience
    corecore