10,298 research outputs found

    Simpler, faster and shorter labels for distances in graphs

    Full text link
    We consider how to assign labels to any undirected graph with n nodes such that, given the labels of two nodes and no other information regarding the graph, it is possible to determine the distance between the two nodes. The challenge in such a distance labeling scheme is primarily to minimize the maximum label lenght and secondarily to minimize the time needed to answer distance queries (decoding). Previous schemes have offered different trade-offs between label lengths and query time. This paper presents a simple algorithm with shorter labels and shorter query time than any previous solution, thereby improving the state-of-the-art with respect to both label length and query time in one single algorithm. Our solution addresses several open problems concerning label length and decoding time and is the first improvement of label length for more than three decades. More specifically, we present a distance labeling scheme with label size (log 3)/2 + o(n) (logarithms are in base 2) and O(1) decoding time. This outperforms all existing results with respect to both size and decoding time, including Winkler's (Combinatorica 1983) decade-old result, which uses labels of size (log 3)n and O(n/log n) decoding time, and Gavoille et al. (SODA'01), which uses labels of size 11n + o(n) and O(loglog n) decoding time. In addition, our algorithm is simpler than the previous ones. In the case of integral edge weights of size at most W, we present almost matching upper and lower bounds for label sizes. For r-additive approximation schemes, where distances can be off by an additive constant r, we give both upper and lower bounds. In particular, we present an upper bound for 1-additive approximation schemes which, in the unweighted case, has the same size (ignoring second order terms) as an adjacency scheme: n/2. We also give results for bipartite graphs and for exact and 1-additive distance oracles

    Sublinear Distance Labeling

    Get PDF
    A distance labeling scheme labels the nn nodes of a graph with binary strings such that, given the labels of any two nodes, one can determine the distance in the graph between the two nodes by looking only at the labels. A DD-preserving distance labeling scheme only returns precise distances between pairs of nodes that are at distance at least DD from each other. In this paper we consider distance labeling schemes for the classical case of unweighted graphs with both directed and undirected edges. We present a O(nDlog2D)O(\frac{n}{D}\log^2 D) bit DD-preserving distance labeling scheme, improving the previous bound by Bollob\'as et. al. [SIAM J. Discrete Math. 2005]. We also give an almost matching lower bound of Ω(nD)\Omega(\frac{n}{D}). With our DD-preserving distance labeling scheme as a building block, we additionally achieve the following results: 1. We present the first distance labeling scheme of size o(n)o(n) for sparse graphs (and hence bounded degree graphs). This addresses an open problem by Gavoille et. al. [J. Algo. 2004], hereby separating the complexity from distance labeling in general graphs which require Ω(n)\Omega(n) bits, Moon [Proc. of Glasgow Math. Association 1965]. 2. For approximate rr-additive labeling schemes, that return distances within an additive error of rr we show a scheme of size O(nrpolylog(rlogn)logn)O\left ( \frac{n}{r} \cdot\frac{\operatorname{polylog} (r\log n)}{\log n} \right ) for r2r \ge 2. This improves on the current best bound of O(nr)O\left(\frac{n}{r}\right) by Alstrup et. al. [SODA 2016] for sub-polynomial rr, and is a generalization of a result by Gawrychowski et al. [arXiv preprint 2015] who showed this for r=2r=2.Comment: A preliminary version of this paper appeared at ESA'1

    Faster Shortest Paths in Dense Distance Graphs, with Applications

    Full text link
    We show how to combine two techniques for efficiently computing shortest paths in directed planar graphs. The first is the linear-time shortest-path algorithm of Henzinger, Klein, Subramanian, and Rao [STOC'94]. The second is Fakcharoenphol and Rao's algorithm [FOCS'01] for emulating Dijkstra's algorithm on the dense distance graph (DDG). A DDG is defined for a decomposition of a planar graph GG into regions of at most rr vertices each, for some parameter r<nr < n. The vertex set of the DDG is the set of Θ(n/r)\Theta(n/\sqrt r) vertices of GG that belong to more than one region (boundary vertices). The DDG has Θ(n)\Theta(n) arcs, such that distances in the DDG are equal to the distances in GG. Fakcharoenphol and Rao's implementation of Dijkstra's algorithm on the DDG (nicknamed FR-Dijkstra) runs in O(nlog(n)r1/2logr)O(n\log(n) r^{-1/2} \log r) time, and is a key component in many state-of-the-art planar graph algorithms for shortest paths, minimum cuts, and maximum flows. By combining these two techniques we remove the logn\log n dependency in the running time of the shortest-path algorithm, making it O(nr1/2log2r)O(n r^{-1/2} \log^2r). This work is part of a research agenda that aims to develop new techniques that would lead to faster, possibly linear-time, algorithms for problems such as minimum-cut, maximum-flow, and shortest paths with negative arc lengths. As immediate applications, we show how to compute maximum flow in directed weighted planar graphs in O(nlogp)O(n \log p) time, where pp is the minimum number of edges on any path from the source to the sink. We also show how to compute any part of the DDG that corresponds to a region with rr vertices and kk boundary vertices in O(rlogk)O(r \log k) time, which is faster than has been previously known for small values of kk

    Distance labeling schemes for trees

    Get PDF
    We consider distance labeling schemes for trees: given a tree with nn nodes, label the nodes with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the distance in the tree between the two nodes. A lower bound by Gavoille et. al. (J. Alg. 2004) and an upper bound by Peleg (J. Graph Theory 2000) establish that labels must use Θ(log2n)\Theta(\log^2 n) bits\footnote{Throughout this paper we use log\log for log2\log_2.}. Gavoille et. al. (ESA 2001) show that for very small approximate stretch, labels use Θ(lognloglogn)\Theta(\log n \log \log n) bits. Several other papers investigate various variants such as, for example, small distances in trees (Alstrup et. al., SODA'03). We improve the known upper and lower bounds of exact distance labeling by showing that 14log2n\frac{1}{4} \log^2 n bits are needed and that 12log2n\frac{1}{2} \log^2 n bits are sufficient. We also give (1+ϵ1+\epsilon)-stretch labeling schemes using Θ(logn)\Theta(\log n) bits for constant ϵ>0\epsilon>0. (1+ϵ1+\epsilon)-stretch labeling schemes with polylogarithmic label size have previously been established for doubling dimension graphs by Talwar (STOC 2004). In addition, we present matching upper and lower bounds for distance labeling for caterpillars, showing that labels must have size 2lognΘ(loglogn)2\log n - \Theta(\log\log n). For simple paths with kk nodes and edge weights in [1,n][1,n], we show that labels must have size k1klogn+Θ(logk)\frac{k-1}{k}\log n+\Theta(\log k)

    Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling

    Full text link
    A distance labeling scheme is an assignment of bit-labels to the vertices of an undirected, unweighted graph such that the distance between any pair of vertices can be decoded solely from their labels. An important class of distance labeling schemes is that of hub labelings, where a node vGv \in G stores its distance to the so-called hubs SvVS_v \subseteq V, chosen so that for any u,vVu,v \in V there is wSuSvw \in S_u \cap S_v belonging to some shortest uvuv path. Notice that for most existing graph classes, the best distance labelling constructions existing use at some point a hub labeling scheme at least as a key building block. Our interest lies in hub labelings of sparse graphs, i.e., those with E(G)=O(n)|E(G)| = O(n), for which we show a lowerbound of n2O(logn)\frac{n}{2^{O(\sqrt{\log n})}} for the average size of the hubsets. Additionally, we show a hub-labeling construction for sparse graphs of average size O(nRS(n)c)O(\frac{n}{RS(n)^{c}}) for some 0<c<10 < c < 1, where RS(n)RS(n) is the so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced matchings in dense graphs. This implies that further improving the lower bound on hub labeling size to n2(logn)o(1)\frac{n}{2^{(\log n)^{o(1)}}} would require a breakthrough in the study of lower bounds on RS(n)RS(n), which have resisted substantial improvement in the last 70 years. For general distance labeling of sparse graphs, we show a lowerbound of 12O(logn)SumIndex(n)\frac{1}{2^{O(\sqrt{\log n})}} SumIndex(n), where SumIndex(n)SumIndex(n) is the communication complexity of the Sum-Index problem over ZnZ_n. Our results suggest that the best achievable hub-label size and distance-label size in sparse graphs may be Θ(n2(logn)c)\Theta(\frac{n}{2^{(\log n)^c}}) for some 0<c<10<c < 1

    A simple yet effective baseline for non-attributed graph classification

    Full text link
    Graphs are complex objects that do not lend themselves easily to typical learning tasks. Recently, a range of approaches based on graph kernels or graph neural networks have been developed for graph classification and for representation learning on graphs in general. As the developed methodologies become more sophisticated, it is important to understand which components of the increasingly complex methods are necessary or most effective. As a first step, we develop a simple yet meaningful graph representation, and explore its effectiveness in graph classification. We test our baseline representation for the graph classification task on a range of graph datasets. Interestingly, this simple representation achieves similar performance as the state-of-the-art graph kernels and graph neural networks for non-attributed graph classification. Its performance on classifying attributed graphs is slightly weaker as it does not incorporate attributes. However, given its simplicity and efficiency, we believe that it still serves as an effective baseline for attributed graph classification. Our graph representation is efficient (linear-time) to compute. We also provide a simple connection with the graph neural networks. Note that these observations are only for the task of graph classification while existing methods are often designed for a broader scope including node embedding and link prediction. The results are also likely biased due to the limited amount of benchmark datasets available. Nevertheless, the good performance of our simple baseline calls for the development of new, more comprehensive benchmark datasets so as to better evaluate and analyze different graph learning methods. Furthermore, given the computational efficiency of our graph summary, we believe that it is a good candidate as a baseline method for future graph classification (or even other graph learning) studies.Comment: 13 pages. Shorter version appears at 2019 ICLR Workshop: Representation Learning on Graphs and Manifolds. arXiv admin note: text overlap with arXiv:1810.00826 by other author

    Partition MCMC for inference on acyclic digraphs

    Full text link
    Acyclic digraphs are the underlying representation of Bayesian networks, a widely used class of probabilistic graphical models. Learning the underlying graph from data is a way of gaining insights about the structural properties of a domain. Structure learning forms one of the inference challenges of statistical graphical models. MCMC methods, notably structure MCMC, to sample graphs from the posterior distribution given the data are probably the only viable option for Bayesian model averaging. Score modularity and restrictions on the number of parents of each node allow the graphs to be grouped into larger collections, which can be scored as a whole to improve the chain's convergence. Current examples of algorithms taking advantage of grouping are the biased order MCMC, which acts on the alternative space of permuted triangular matrices, and non ergodic edge reversal moves. Here we propose a novel algorithm, which employs the underlying combinatorial structure of DAGs to define a new grouping. As a result convergence is improved compared to structure MCMC, while still retaining the property of producing an unbiased sample. Finally the method can be combined with edge reversal moves to improve the sampler further.Comment: Revised version. 34 pages, 16 figures. R code available at https://github.com/annlia/partitionMCM

    Transit Node Routing Reconsidered

    Full text link
    Transit Node Routing (TNR) is a fast and exact distance oracle for road networks. We show several new results for TNR. First, we give a surprisingly simple implementation fully based on Contraction Hierarchies that speeds up preprocessing by an order of magnitude approaching the time for just finding a CH (which alone has two orders of magnitude larger query time). We also develop a very effective purely graph theoretical locality filter without any compromise in query times. Finally, we show that a specialization to the online many-to-one (or one-to-many) shortest path further speeds up query time by an order of magnitude. This variant even has better query time than the fastest known previous methods which need much more space.Comment: 19 pages, submitted to SEA'201
    corecore