2,803 research outputs found

    QoSatAr: a cross-layer architecture for E2E QoS provisioning over DVB-S2 broadband satellite systems

    Get PDF
    This article presents QoSatAr, a cross-layer architecture developed to provide end-to-end quality of service (QoS) guarantees for Internet protocol (IP) traffic over the Digital Video Broadcasting-Second generation (DVB-S2) satellite systems. The architecture design is based on a cross-layer optimization between the physical layer and the network layer to provide QoS provisioning based on the bandwidth availability present in the DVB-S2 satellite channel. Our design is developed at the satellite-independent layers, being in compliance with the ETSI-BSM-QoS standards. The architecture is set up inside the gateway, it includes a Re-Queuing Mechanism (RQM) to enhance the goodput of the EF and AF traffic classes and an adaptive IP scheduler to guarantee the high-priority traffic classes taking into account the channel conditions affected by rain events. One of the most important aspect of the architecture design is that QoSatAr is able to guarantee the QoS requirements for specific traffic flows considering a single parameter: the bandwidth availability which is set at the physical layer (considering adaptive code and modulation adaptation) and sent to the network layer by means of a cross-layer optimization. The architecture has been evaluated using the NS-2 simulator. In this article, we present evaluation metrics, extensive simulations results and conclusions about the performance of the proposed QoSatAr when it is evaluated over a DVB-S2 satellite scenario. The key results show that the implementation of this architecture enables to keep control of the satellite system load while guaranteeing the QoS levels for the high-priority traffic classes even when bandwidth variations due to rain events are experienced. Moreover, using the RQM mechanism the user’s quality of experience is improved while keeping lower delay and jitter values for the high-priority traffic classes. In particular, the AF goodput is enhanced around 33% over the drop tail scheme (on average)

    A Delay-Optimal Packet Scheduler for M2M Uplink

    Full text link
    In this paper, we present a delay-optimal packet scheduler for processing the M2M uplink traffic at the M2M application server (AS). Due to the delay-heterogeneity in uplink traffic, we classify it broadly into delay-tolerant and delay-sensitive traffic. We then map the diverse delay requirements of each class to sigmoidal functions of packet delay and formulate a utility-maximization problem that results in a proportionally fair delay-optimal scheduler. We note that solving this optimization problem is equivalent to solving for the optimal fraction of time each class is served with (preemptive) priority such that it maximizes the system utility. Using Monte-Carlo simulations for the queuing process at AS, we verify the correctness of the analytical result for optimal scheduler and show that it outperforms other state-of-the-art packet schedulers such as weighted round robin, max-weight scheduler, fair scheduler and priority scheduling. We also note that at higher traffic arrival rate, the proposed scheduler results in a near-minimal delay variance for the delay-sensitive traffic which is highly desirable. This comes at the expense of somewhat higher delay variance for delay-tolerant traffic which is usually acceptable due to its delay-tolerant nature.Comment: Accepted for publication in IEEE MILCOM 2016 (6 pages, 7 figures

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Resource virtualisation of network routers

    Get PDF
    There is now considerable interest in applications that transport time-sensitive data across the best-effort Internet. We present a novel network router architecture, which has the potential to improve the Quality of Service guarantees provided to such flows. This router architecture makes use of virtual machine techniques, to assign an individual virtual routelet to each network flow requiring QoS guarantees. We describe a prototype of this virtual routelet architecture, and evaluate its effectiveness. Experimental results of the performance and flow partitioning of this prototype, compared with a standard software router, suggest promise in the virtual routelet architecture

    A Fair and Efficient Packet Scheduling Scheme for IEEE 802.16 Broadband Wireless Access Systems

    Full text link
    This paper proposes a fair and efficient QoS scheduling scheme for IEEE 802.16 BWA systems that satisfies both throughput and delay guarantee to various real and non-real time applications. The proposed QoS scheduling scheme is compared with an existing QoS scheduling scheme proposed in literature in recent past. Simulation results show that the proposed scheduling scheme can provide a tight QoS guarantee in terms of delay, delay violation rate and throughput for all types of traffic as defined in the WiMAX standard, thereby maintaining the fairness and helps to eliminate starvation of lower priority class services. Bandwidth utilization of the system and fairness index of the resources are also encountered to validate the QoS provided by our proposed scheduling scheme
    • …
    corecore