136 research outputs found

    Cross-layer hybrid automatic repeat request error control with turbo processing for wireless system

    Get PDF
    The increasing demand for wireless communication system requires an efficient design in wireless communication system. One of the main challenges is to design error control mechanism in noisy wireless channel. Forward Error Correction (FEC) and Automatic Repeat reQuest (ARQ) are two main error control mechanisms. Hybrid ARQ allows the use of either FEC or ARQ when required. The issues with existing Hybrid ARQ are reliability, complexity and inefficient design. Therefore, the design of Hybrid ARQ needs to be further improved in order to achieve performance close to the Shannon capacity. The objective of this research is to develop a Cross-Layer Design Hybrid ARQ defined as CLD_ARQ to further minimize error in wireless communication system. CLD_ARQ comprises of three main stages. First, a low complexity FEC defined as IRC_FEC for error detection and correction has been developed by using Irregular Repetition Code (IRC) with Turbo processing. The second stage is the enhancement of IRC_FEC defined as EM_IRC_FEC to improve the reliability of error detection by adopting extended mapping. The last stage is the development of efficient CLD_ARQ to include retransmission for error correction that exploits EM_IRC_FEC and ARQ. In the proposed design, serial iterative decoding and parallel iterative decoding are deployed in the error detection and correction. The performance of the CLD_ARQ is evaluated in the Additive White Gaussian Noise (AWGN) channel using EXtrinsic Information Transfer (EXIT) chart, bit error rate (BER) and throughput analysis. The results show significant Signal-to-Noise Ratio (SNR) gain from the theoretical limit at BER of 10-5. IRC_FEC outperforms Recursive Systematic Convolutional Code (RSCC) by SNR gain up to 7% due to the use of IRC as a simple channel coding code. The usage of CLD_ARQ enhances the SNR gain by 53% compared to without ARQ due to feedback for retransmission. The adoption of extended mapping in the CLD_ARQ improves the SNR gain up to 50% due to error detection enhancement. In general, the proposed CLD_ARQ can achieve low BER and close to the Shannon‘s capacity even in worse channel condition

    Residue number system coded differential space-time-frequency coding.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2007.The rapidly growing need for fast and reliable transmission over a wireless channel motivates the development of communication systems that can support high data rates at low complexity. Achieving reliable communication over a wireless channel is a challenging task largely due to the possibility of multipaths which may lead to intersymbol interference (ISI). Diversity techniques such as time, frequency and space are commonly used to combat multipath fading. Classical diversity techniques use repetition codes such that the information is replicated and transmitted over several channels that are sufficiently spaced. In fading channels, the performance across some diversity branches may be excessively attenuated, making throughput unacceptably small. In principle, more powerful coding techniques can be used to maximize the diversity order. This leads to bandwidth expansion or increased transmission power to accommodate the redundant bits. Hence there is need for coding and modulation schemes that provide low error rate performance in a bandwidth efficient manner. If diversity schemes are combined, more independent dimensions become available for information transfer. The first part of the thesis addresses achieving temporal diversity through employing error correcting coding schemes combined with interleaving. Noncoherent differential modulation does not require explicit knowledge or estimate of the channel, instead the information is encoded in the transitions. This lends itself to the possibility of turbo-like serial concatenation of a standard outer channel encoder with an inner modulation code amenable to noncoherent detection through an interleaver. An iterative approach to joint decoding and demodulation can be realized by exchanging soft information between the decoder and the demodulator. This has been shown to be effective and hold hope for approaching capacity over fast fading channels. However most of these schemes employ low rate convolutional codes as their channel encoders. In this thesis we propose the use of redundant residue number system codes. It is shown that these codes can achieve comparable performance at minimal complexity and high data rates. The second part deals with the possibility of combining several diversity dimensions into a reliable bandwidth efficient communication scheme. Orthogonal frequency division multiplexing (OFDM) has been used to combat multipaths. Combining OFDM with multiple-input multiple-output (MIMO) systems to form MIMO-OFDM not only reduces the complexity by eliminating the need for equalization but also provides large channel capacity and a high diversity potential. Space-time coded OFDM was proposed and shown to be an effective transmission technique for MIMO systems. Spacefrequency coding and space-time-frequency coding were developed out of the need to exploit the frequency diversity due to multipaths. Most of the proposed schemes in the literature maximize frequency diversity predominantly from the frequency-selective nature of the fading channel. In this thesis we propose the use of residue number system as the frequency encoder. It is shown that the proposed space-time-frequency coding scheme can maximize the diversity gains over space, time and frequency domains. The gain of MIMO-OFDM comes at the expense of increased receiver complexity. Furthermore, most of the proposed space-time-frequency coding schemes assume frequency selective block fading channels which is not an ideal assumption for broadband wireless communications. Relatively high mobility in broadband wireless communications systems may result in high Doppler frequency, hence time-selective (rapid) fading. Rapidly changing channel characteristics impedes the channel estimation process and may result in incorrect estimates of the channel coefficients. The last part of the thesis deals with the performance of differential space-time-frequency coding in fast fading channels

    Polar coding for optical wireless communication

    Get PDF

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal

    Channel Coding in Molecular Communication

    Get PDF
    This dissertation establishes and analyzes a complete molecular transmission system from a communication engineering perspective. Its focus is on diffusion-based molecular communication in an unbounded three-dimensional fluid medium. As a basis for the investigation of transmission algorithms, an equivalent discrete-time channel model (EDTCM) is developed and the characterization of the channel is described by an analytical derivation, a random walk based simulation, a trained artificial neural network (ANN), and a proof of concept testbed setup. The investigated transmission algorithms cover modulation schemes at the transmitter side, as well as channel equalizers and detectors at the receiver side. In addition to the evaluation of state-of-the-art techniques and the introduction of orthogonal frequency-division multiplexing (OFDM), the novel variable concentration shift keying (VCSK) modulation adapted to the diffusion-based transmission channel, the lowcomplex adaptive threshold detector (ATD) working without explicit channel knowledge, the low-complex soft-output piecewise linear detector (PLD), and the optimal a posteriori probability (APP) detector are of particular importance and treated. To improve the error-prone information transmission, block codes, convolutional codes, line codes, spreading codes and spatial codes are investigated. The analysis is carried out under various approaches of normalization and gains or losses compared to the uncoded transmission are highlighted. In addition to state-of-the-art forward error correction (FEC) codes, novel line codes adapted to the error statistics of the diffusion-based channel are proposed. Moreover, the turbo principle is introduced into the field of molecular communication, where extrinsic information is exchanged iteratively between detector and decoder. By means of an extrinsic information transfer (EXIT) chart analysis, the potential of the iterative processing is shown and the communication channel capacity is computed, which represents the theoretical performance limit for the system under investigation. In addition, the construction of an irregular convolutional code (IRCC) using the EXIT chart is presented and its performance capability is demonstrated. For the evaluation of all considered transmission algorithms the bit error rate (BER) performance is chosen. The BER is determined by means of Monte Carlo simulations and for some algorithms by theoretical derivation

    Near-capacity MIMOs using iterative detection

    No full text
    In this thesis, Multiple-Input Multiple-Output (MIMO) techniques designed for transmission over narrowband Rayleigh fading channels are investigated. Specifically, in order to providea diversity gain while eliminating the complexity of MIMO channel estimation, a Differential Space-Time Spreading (DSTS) scheme is designed that employs non-coherent detection. Additionally, in order to maximise the coding advantage of DSTS, it is combined with Sphere Packing (SP) modulation. The related capacity analysis shows that the DSTS-SP scheme exhibits a higher capacity than its counterpart dispensing with SP. Furthermore, in order to attain additional performance gains, the DSTS system invokes iterative detection, where the outer code is constituted by a Recursive Systematic Convolutional (RSC) code, while the inner code is a SP demapper in one of the prototype systems investigated, while the other scheme employs a Unity Rate Code (URC) as its inner code in order to eliminate the error floor exhibited by the system dispensing with URC. EXIT charts are used to analyse the convergence behaviour of the iteratively detected schemes and a novel technique is proposed for computing the maximum achievable rate of the system based on EXIT charts. Explicitly, the four-antenna-aided DSTSSP system employing no URC precoding attains a coding gain of 12 dB at a BER of 10-5 and performs within 1.82 dB from the maximum achievable rate limit. By contrast, the URC aidedprecoded system operates within 0.92 dB from the same limit.On the other hand, in order to maximise the DSTS system’s throughput, an adaptive DSTSSP scheme is proposed that exploits the advantages of differential encoding, iterative decoding as well as SP modulation. The achievable integrity and bit rate enhancements of the system are determined by the following factors: the specific MIMO configuration used for transmitting data from the four antennas, the spreading factor used and the RSC encoder’s code rate.Additionally, multi-functional MIMO techniques are designed to provide diversity gains, multiplexing gains and beamforming gains by combining the benefits of space-time codes, VBLASTand beamforming. First, a system employing Nt=4 transmit Antenna Arrays (AA) with LAA number of elements per AA and Nr=4 receive antennas is proposed, which is referred to as a Layered Steered Space-Time Code (LSSTC). Three iteratively detected near-capacity LSSTC-SP receiver structures are proposed, which differ in the number of inner iterations employed between the inner decoder and the SP demapper as well as in the choice of the outer code, which is either an RSC code or an Irregular Convolutional Code (IrCC). The three systems are capable of operating within 0.9, 0.4 and 0.6 dB from the maximum achievable rate limit of the system. A comparison between the three iteratively-detected schemes reveals that a carefully designed two-stage iterative detection scheme is capable of operating sufficiently close to capacity at a lower complexity, when compared to a three-stage system employing a RSC or a two-stage system using an IrCC as an outer code. On the other hand, in order to allow the LSSTC scheme to employ less receive antennas than transmit antennas, while still accommodating multiple users, a Layered Steered Space-Time Spreading (LSSTS) scheme is proposed that combines the benefits of space-time spreading, V-BLAST, beamforming and generalised MC DS-CDMA. Furthermore, iteratively detected LSSTS schemes are presented and an LLR post-processing technique is proposed in order to improve the attainable performance of the iteratively detected LSSTS system.Finally, a distributed turbo coding scheme is proposed that combines the benefits of turbo coding and cooperative communication, where iterative detection is employed by exchanging extrinsic information between the decoders of different single-antenna-aided users. Specifically, the effect of the errors induced in the first phase of cooperation, where the two users exchange their data, on the performance of the uplink in studied, while considering different fading channel characteristics

    Récepteur itératif pour les systÚmes MIMO-OFDM basé sur le décodage sphérique : convergence, performance et complexité

    Get PDF
    Recently, iterative processing has been widely considered to achieve near-capacity performance and reliable high data rate transmission, for future wireless communication systems. However, such an iterative processing poses significant challenges for efficient receiver design. In this thesis, iterative receiver combining multiple-input multiple-output (MIMO) detection with channel decoding is investigated for high data rate transmission. The convergence, the performance and the computational complexity of the iterative receiver for MIMO-OFDM system are considered. First, we review the most relevant hard-output and soft-output MIMO detection algorithms based on sphere decoding, K-Best decoding, and interference cancellation. Consequently, a low-complexity K-best (LCK- Best) based decoder is proposed in order to substantially reduce the computational complexity without significant performance degradation. We then analyze the convergence behaviors of combining these detection algorithms with various forward error correction codes, namely LTE turbo decoder and LDPC decoder with the help of Extrinsic Information Transfer (EXIT) charts. Based on this analysis, a new scheduling order of the required inner and outer iterations is suggested. The performance of the proposed receiver is evaluated in various LTE channel environments, and compared with other MIMO detection schemes. Secondly, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared for different modulation orders and coding rates. Simulation results show that our proposed approaches achieve near optimal performance but more importantly it can substantially reduce the computational complexity of the system. From a practical point of view, fixed-point representation is usually used in order to reduce the hardware costs in terms of area, power consumption and execution time. Therefore, we present efficient fixed point arithmetic of the proposed iterative receiver based on LC-KBest decoder. Additionally, the impact of the channel estimation on the system performance is studied. The proposed iterative receiver is tested in a real-time environment using the MIMO WARP platform.Pour permettre l’accroissement de dĂ©bit et de robustesse dans les futurs systĂšmes de communication sans fil, les processus itĂ©ratifs sont de plus considĂ©rĂ©s dans les rĂ©cepteurs. Cependant, l’adoption d’un traitement itĂ©ratif pose des dĂ©fis importants dans la conception du rĂ©cepteur. Dans cette thĂšse, un rĂ©cepteur itĂ©ratif combinant les techniques de dĂ©tection multi-antennes avec le dĂ©codage de canal est Ă©tudiĂ©. Trois aspects sont considĂ©rĂ©s dans un contexte MIMOOFDM: la convergence, la performance et la complexitĂ© du rĂ©cepteur. Dans un premier temps, nous Ă©tudions les diffĂ©rents algorithmes de dĂ©tection MIMO Ă  dĂ©cision dure et souple basĂ©s sur l’égalisation, le dĂ©codage sphĂ©rique, le dĂ©codage K-Best et l’annulation d’interfĂ©rence. Un dĂ©codeur K-best de faible complexitĂ© (LC-K-Best) est proposĂ© pour rĂ©duire la complexitĂ© sans dĂ©gradation significative des performances. Nous analysons ensuite la convergence de la combinaison de ces algorithmes de dĂ©tection avec diffĂ©rentes techniques de codage de canal, notamment le dĂ©codeur turbo et le dĂ©codeur LDPC en utilisant le diagramme EXIT. En se basant sur cette analyse, un nouvel ordonnancement des itĂ©rations internes et externes nĂ©cessaires est proposĂ©. Les performances du rĂ©cepteur ainsi proposĂ© sont Ă©valuĂ©es dans diffĂ©rents modĂšles de canal LTE, et comparĂ©es avec diffĂ©rentes techniques de dĂ©tection MIMO. Ensuite, la complexitĂ© des rĂ©cepteurs itĂ©ratifs avec diffĂ©rentes techniques de codage de canal est Ă©tudiĂ©e et comparĂ©e pour diffĂ©rents modulations et rendement de code. Les rĂ©sultats de simulation montrent que les approches proposĂ©es offrent un bon compromis entre performance et complexitĂ©. D’un point de vue implĂ©mentation, la reprĂ©sentation en virgule fixe est gĂ©nĂ©ralement utilisĂ©e afin de rĂ©duire les coĂ»ts en termes de surface, de consommation d’énergie et de temps d’exĂ©cution. Nous prĂ©sentons ainsi une reprĂ©sentation en virgule fixe du rĂ©cepteur itĂ©ratif proposĂ© basĂ© sur le dĂ©codeur LC K-Best. En outre, nous Ă©tudions l’impact de l’estimation de canal sur la performance du systĂšme. Finalement, le rĂ©cepteur MIMOOFDM itĂ©ratif est testĂ© sur la plateforme matĂ©rielle WARP, validant le schĂ©ma proposĂ©

    State of the art baseband DSP platforms for Software Defined Radio: A survey

    Get PDF
    Software Defined Radio (SDR) is an innovative approach which is becoming a more and more promising technology for future mobile handsets. Several proposals in the field of embedded systems have been introduced by different universities and industries to support SDR applications. This article presents an overview of current platforms and analyzes the related architectural choices, the current issues in SDR, as well as potential future trends.Peer reviewe
    • 

    corecore