86,931 research outputs found

    The Practical Challenges of Interference Alignment

    Full text link
    Interference alignment (IA) is a revolutionary wireless transmission strategy that reduces the impact of interference. The idea of interference alignment is to coordinate multiple transmitters so that their mutual interference aligns at the receivers, facilitating simple interference cancellation techniques. Since IA's inception, researchers have investigated its performance and proposed improvements, verifying IA's ability to achieve the maximum degrees of freedom (an approximation of sum capacity) in a variety of settings, developing algorithms for determining alignment solutions, and generalizing transmission strategies that relax the need for perfect alignment but yield better performance. This article provides an overview of the concept of interference alignment as well as an assessment of practical issues including performance in realistic propagation environments, the role of channel state information at the transmitter, and the practicality of interference alignment in large networks.Comment: submitted to IEEE Wireless Communications Magazin

    Zero-Delay Joint Source-Channel Coding in the Presence of Interference Known at the Encoder

    Get PDF
    Zero-delay transmission of a Gaussian source over an additive white Gaussian noise (AWGN) channel is considered in the presence of an additive Gaussian interference signal. The mean squared error (MSE) distortion is minimized under an average power constraint assuming that the interference signal is known at the transmitter. Optimality of simple linear transmission does not hold in this setting due to the presence of the known interference signal. While the optimal encoder-decoder pair remains an open problem, various non-linear transmission schemes are proposed in this paper. In particular, interference concentration (ICO) and one-dimensional lattice (1DL) strategies, using both uniform and non-uniform quantization of the interference signal, are studied. It is shown that, in contrast to typical scalar quantization of Gaussian sources, a non-uniform quantizer, whose quantization intervals become smaller as we go further from zero, improves the performance. Given that the optimal decoder is the minimum MSE (MMSE) estimator, a necessary condition for the optimality of the encoder is derived, and the numerically optimized encoder (NOE) satisfying this condition is obtained. Based on the numerical results, it is shown that 1DL with nonuniform quantization performs closer (compared to the other schemes) to the numerically optimized encoder while requiring significantly lower complexity

    Interference Mitigation Through Limited Receiver Cooperation: Symmetric Case

    Full text link
    Interference is a major issue that limits the performance in wireless networks, and cooperation among receivers can help mitigate interference by forming distributed MIMO systems. The rate at which receivers cooperate, however, is limited in most scenarios. How much interference can one bit of receiver cooperation mitigate? In this paper, we study the two-user Gaussian interference channel with conferencing decoders to answer this question in a simple setting. We characterize the fundamental gain from cooperation: at high SNR, when INR is below 50% of SNR in dB scale, one-bit cooperation per direction buys roughly one-bit gain per user until full receiver cooperation performance is reached, while when INR is between 67% and 200% of SNR in dB scale, one-bit cooperation per direction buys roughly half-bit gain per user. The conclusion is drawn based on the approximate characterization of the symmetric capacity in the symmetric set-up. We propose strategies achieving the symmetric capacity universally to within 3 bits. The strategy consists of two parts: (1) the transmission scheme, where superposition encoding with a simple power split is employed, and (2) the cooperative protocol, where quantize-binning is used for relaying.Comment: To appear in IEEE Information Theory Workshop, Taormina, October 2009. Final versio

    Capacity of Asynchronous Random-Access Scheduling in Wireless Networks

    Get PDF
    Abstract—We study the throughput capacity of wireless networks which employ (asynchronous) random-access scheduling as opposed to deterministic scheduling. The central question we answer is: how should we set the channel-access probability for each link in the network so that the network operates close to its optimal throughput capacity? We design simple and distributed channel-access strategies for random-access networks which are provably competitive with respect to the optimal scheduling strategy, which is deterministic, centralized, and computationally infeasible. We show that the competitiveness of our strategies are nearly the best achievable via random-access scheduling, thus establishing fundamental limits on the performance of randomaccess. A notable outcome of our work is that random access compares well with deterministic scheduling when link transmission durations differ by small factors, and much worse otherwise. The distinguishing aspects of our work include modeling and rigorous analysis of asynchronous communication, asymmetry in link transmission durations, and hidden terminals under arbitrary link-conflict based wireless interference models. I
    • …
    corecore