635 research outputs found

    An Integrated Testbed for Cooperative Perception with Heterogeneous Mobile and Static Sensors

    Get PDF
    Cooperation among devices with different sensing, computing and communication capabilities provides interesting possibilities in a growing number of problems and applications including domotics (domestic robotics), environmental monitoring or intelligent cities, among others. Despite the increasing interest in academic and industrial communities, experimental tools for evaluation and comparison of cooperative algorithms for such heterogeneous technologies are still very scarce. This paper presents a remote testbed with mobile robots and Wireless Sensor Networks (WSN) equipped with a set of low-cost off-the-shelf sensors, commonly used in cooperative perception research and applications, that present high degree of heterogeneity in their technology, sensed magnitudes, features, output bandwidth, interfaces and power consumption, among others. Its open and modular architecture allows tight integration and interoperability between mobile robots and WSN through a bidirectional protocol that enables full interaction. Moreover, the integration of standard tools and interfaces increases usability, allowing an easy extension to new hardware and software components and the reuse of code. Different levels of decentralization are considered, supporting from totally distributed to centralized approaches. Developed for the EU-funded Cooperating Objects Network of Excellence (CONET) and currently available at the School of Engineering of Seville (Spain), the testbed provides full remote control through the Internet. Numerous experiments have been performed, some of which are described in the paper

    Connectivity-guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks

    Get PDF
    Mobile sensors can relocate and self-deploy into a network. While focusing on the problems of coverage, existing deployment schemes largely over-simplify the conditions for network connectivity: they either assume that the communication range is large enough for sensors in geometric neighborhoods to obtain location information through local communication, or they assume a dense network that remains connected. In addition, an obstacle-free field or full knowledge of the field layout is often assumed. We present new schemes that are not governed by these assumptions, and thus adapt to a wider range of application scenarios. The schemes are designed to maximize sensing coverage and also guarantee connectivity for a network with arbitrary sensor communication/sensing ranges or node densities, at the cost of a small moving distance. The schemes do not need any knowledge of the field layout, which can be irregular and have obstacles/holes of arbitrary shape. Our first scheme is an enhanced form of the traditional virtual-force-based method, which we term the Connectivity-Preserved Virtual Force (CPVF) scheme. We show that the localized communication, which is the very reason for its simplicity, results in poor coverage in certain cases. We then describe a Floor-based scheme which overcomes the difficulties of CPVF and, as a result, significantly outperforms it and other state-of-the-art approaches. Throughout the paper our conclusions are corroborated by the results from extensive simulations

    Using IoT Innovation and Efficiency in Agriculture Monitoring System

    Get PDF
    Agriculture is undoubtedly a leading field for livelihoods in China. As the population increases, it is necessary to increase agricultural productivity. By capturing the support and the increment in production on farms, the need for freshwater used for irrigation increases too. Presently, agriculture accounts for 80% of overall water uptake in China. Unexpected overflow of water carelessly leads to waste of water. Therefore we created a programmed plant irrigation system with Arduino that mechanically supplies water to the plants and keeps it updated by transferring the message to user. Plant irrigation system employs the soil moisture sensor which controls a degree of moisture in the soil. If the humidity degree is lower, Arduino activates a pump of water to supply water to the system. The pump of water stops by design when the organism detects sufficient moisture in the ground. Each time the system is switched off or on, an electronic messaging is conveyed to the end-user through the IoT unit, informing the position of the soil moisture and the pump of water. A spray motor and the pump of water are grounded on the crane concept. Widely, this system is applicable for in small fields, gardens farms, etc. This design is entirely programmed and needed no human involvement. Furthermore, transmission of the sensor readings send through a Thing speak frequency to produce graphic elements for better inquiry. This study gathers the ideas of IoT (Internet of Things) with some engineering tools like machinery, artificial intelligence and use of sensors in an efficient way to respond current needs and extraction of resources by availing scientific methods and procedures that work on inputs. Moreover, this study further defines the engineering works that have been part of this field, but it requires more efficiency and reduction of energy as well as costs by adding more contribution of IoT in the field of agriculture engineering

    Random Neural Networks and Optimisation

    Get PDF
    In this thesis we introduce new models and learning algorithms for the Random Neural Network (RNN), and we develop RNN-based and other approaches for the solution of emergency management optimisation problems. With respect to RNN developments, two novel supervised learning algorithms are proposed. The first, is a gradient descent algorithm for an RNN extension model that we have introduced, the RNN with synchronised interactions (RNNSI), which was inspired from the synchronised firing activity observed in brain neural circuits. The second algorithm is based on modelling the signal-flow equations in RNN as a nonnegative least squares (NNLS) problem. NNLS is solved using a limited-memory quasi-Newton algorithm specifically designed for the RNN case. Regarding the investigation of emergency management optimisation problems, we examine combinatorial assignment problems that require fast, distributed and close to optimal solution, under information uncertainty. We consider three different problems with the above characteristics associated with the assignment of emergency units to incidents with injured civilians (AEUI), the assignment of assets to tasks under execution uncertainty (ATAU), and the deployment of a robotic network to establish communication with trapped civilians (DRNCTC). AEUI is solved by training an RNN tool with instances of the optimisation problem and then using the trained RNN for decision making; training is achieved using the developed learning algorithms. For the solution of ATAU problem, we introduce two different approaches. The first is based on mapping parameters of the optimisation problem to RNN parameters, and the second on solving a sequence of minimum cost flow problems on appropriately constructed networks with estimated arc costs. For the exact solution of DRNCTC problem, we develop a mixed-integer linear programming formulation, which is based on network flows. Finally, we design and implement distributed heuristic algorithms for the deployment of robots when the civilian locations are known or uncertain

    Efficient Mission Planning for Robot Networks in Communication Constrained Environments

    Get PDF
    Many robotic systems are remotely operated nowadays that require uninterrupted connection and safe mission planning. Such systems are commonly found in military drones, search and rescue operations, mining robotics, agriculture, and environmental monitoring. Different robotic systems may employ disparate communication modalities such as radio network, visible light communication, satellite, infrared, Wi-Fi. However, in an autonomous mission where the robots are expected to be interconnected, communication constrained environment frequently arises due to the out of range problem or unavailability of the signal. Furthermore, several automated projects (building construction, assembly line) do not guarantee uninterrupted communication, and a safe project plan is required that optimizes collision risks, cost, and duration. In this thesis, we propose four pronged approaches to alleviate some of these issues: 1) Communication aware world mapping; 2) Communication preserving using the Line-of-Sight (LoS); 3) Communication aware safe planning; and 4) Multi-Objective motion planning for navigation. First, we focus on developing a communication aware world map that integrates traditional world models with the planning of multi-robot placement. Our proposed communication map selects the optimal placement of a chain of intermediate relay vehicles in order to maximize communication quality to a remote unit. We also vi propose an algorithm to build a min-Arborescence tree when there are multiple remote units to be served. Second, in communication denied environments, we use Line-of-Sight (LoS) to establish communication between mobile robots, control their movements and relay information to other autonomous units. We formulate and study the complexity of a multi-robot relay network positioning problem and propose approximation algorithms that restore visibility based connectivity through the relocation of one or more robots. Third, we develop a framework to quantify the safety score of a fully automated robotic mission where the coexistence of human and robot may pose a collision risk. A number of alternate mission plans are analyzed using motion planning algorithms to select the safest one. Finally, an efficient multi-objective optimization based path planning for the robots is developed to deal with several Pareto optimal cost attributes
    corecore