19,755 research outputs found

    An experimental and analytical investigation of proprotor whirl flutter

    Get PDF
    The results of an experimental parametric investigation of whirl flutter are presented for a model consisting of a windmilling propeller-rotor, or proprotor, having blades with offset flapping hinges mounted on a rigid pylon with flexibility in pitch and yaw. The investigation was motivated by the need to establish a large data base from which to assess the predictability of whirl flutter for a proprotor since some question has been raised as to whether flutter in the forward whirl mode could be predicted with confidence. To provide the necessary data base, the parametric study included variation in the pylon pitch and yaw stiffnesses, flapping hinge offset, and blade kinematic pitch-flap coupling over a large range of advance ratios. Cases of forward whirl flutter and of backward whirl flutter are documented. Measured whirl flutter characteristics were shown to be in good agreement with predictions from two different linear stability analyses which employed simple, two dimensional, quasi-steady aerodynamics for the blade loading. On the basis of these results, it appears that proprotor whirl flutter, both forward and backward, can be predicted

    Whirl and Stall Flutter Simulation Using CFD

    Get PDF
    This paper presents recent research on numerical methods for whirl and stall flutter using computational fluid dynamics. The method involves coupling of the HMB3 CFD solver of the University of Glasgow and a NASTRAN derived structural model. Based upon a literature survey, a significant amount of research has been conducted on the numerical investigation of tiltrotors, with a focus on the XV-15 and V-22 aircraft. Within this paper, the coupling procedure is presented along with a steady CFD computation to highlight the accuracy of the high-fidelity method. In addition to this, a simple method is used to investigate the whirl flutter boundary of a standard propeller and the XV-15 blade

    Prediction of destabilizing blade tip forces for shrouded and unshrouded turbines

    Get PDF
    The effect of a nonuniform flow field on the Alford force calculation is investigated. The ideas used here are based on those developed by Horlock and Greitzer. It is shown that the nonuniformity of the flow field does contribute to the Alford force calculation. An attempt is also made to include the effect of whirl speed. The values predicted by the model are compared with those obtained experimentally by Urlicks and Wohlrab. The possibility of using existing turbine tip loss correlations to predict beta is also exploited. The nonuniform flow field induced by the tip clearnance variation tends to increase the resultant destabilizing force over and above what would be predicted on the basis of the local variation of efficiency. On the one hand, the pressure force due to the nonuniform inlet and exit pressure also plays a part even for unshrouded blades, and this counteracts the flow field effects, so that the simple Alford prediction remains a reasonable approximation. Once the efficiency variation with clearance is known, the presented model gives a slightly overpredicted, but reasonably accurate destabilizing force. In the absence of efficiency vs. clearance data, an empirical tip loss coefficient can be used to give a reasonable prediction of destabilizing force. To a first approximation, the whirl does have a damping effect, but only of small magnitude, and thus it can be ignored for some purposes

    Observing complete gravitational wave signals from dynamical capture binaries

    Full text link
    We assess the detectability of the gravitational wave signals from highly eccentric compact binaries. We use a simple model for the inspiral, merger, and ringdown of these systems. The model is based on mapping the binary to an effective single black hole system described by a Kerr metric, thereby including certain relativistic effects such as zoom-whirl-type behavior. The resultant geodesics source quadrupolar radiation and, in turn, are evolved under its dissipative effects. At the light ring, we attach a merger model that was previously developed for quasicircular mergers but also performs well for eccentric mergers with little modification. We apply this model to determine the detectability of these sources for initial, Enhanced, and Advanced LIGO across the parameter space of nonspinning close capture compact binaries. We conclude that, should these systems exist in nature, the vast majority will be missed by conventional burst searches or by quasicircular waveform templates in the advanced detector era. Other methods, such as eccentric templates or, more practically, a stacked excess power search, must be developed to avoid losing these sources. These systems would also have been missed frequently in the initial LIGO data analysis. Thus, previous null coincidence results with detected gamma-ray bursts cannot exclude the possibility of coincident gravitational wave signals from eccentric binaries.Comment: 18 pages, 18 figures; revised to match accepted version, PRD in pres

    Model predictions and experimental results for the rotordynamic characteristics of leakage flows in centrifugal pumps

    Get PDF
    The role played by fluid forces in determining the rotordynamic stability and characteristics of a centrifugal pump is gaining increasing attention. The present research investigates the contributions to the rotordynamic forces from the discharge-to-suction leakage flows between the front shroud of the rotating impeller and the stationary pump casing. An experiment was designed to measure the rotordynamic shroud forces due to simulated leakage flows for different parameters such as flowrate, shroud clearance, face seal clearance, and eccentricity. The functional dependence on the ratio of whirl frequency to rotating frequency (termed the whirl ratio) is very similar to that measured in experiments and similar to that predicted by the theoretical work of Childs [1]. Childs' bulk flow model yielded some unusual results including peaks in the rotordynamic forces at particular positive whirl ratios, a phenomenon which Childs tentatively described as a "resonance" of the leakage flow. This unexpected phenomenon developed at small positive whirl ratios when the inlet swirl velocity ratio exceeds about 0.5. Childs points out that a typical swirl velocity ratio at inlet (pump discharge) would be about 0.5 and may not, therefore, be large enough for the resonance to be manifest. To explore whether this effect occurs, an inlet guide vane was constructed which introduced a known amount of swirl into the flow upstream of the leakage flow inlet. A detailed comparison of model predictions with the present experimental program is presented. The experimental results showed no evidence of the "resonances," even at much larger swirl inlet velocities than explored by Childs

    Fluid-induced Rotordynamic Forces and Instabilities

    Get PDF
    In the late 1970s, the authors began a collaboration with our colleague Tom Caughey that helped define a new set of fluid-structure interaction phenomena in turbomachines, namely fluid-induced rotordynamic forces and instabilities. That collaboration and the 31 joint ABC papers it produced epitomized Tom Caughey's genius and we reprise it here in his honor. The design of the space shuttle main engine (SSME) pushed beyond the boundaries of many known technologies. In particular, the rotating speeds and operating conditions of the high speed liquid oxygen and liquid hydrogen turbopumps were extreme and early testing revealed a whirl instability whose magnitude exceeded expectations and allowable limits. It was suspected and later proven that fluid-induced rotordynamic effects were a contributing factor and yet very little was known of such phenomena. As one of the efforts seeking understanding, we constructed a facility to measure fluid-induced rotordynamic forces. This was subsequently used in a broad range of investigations. Initially, the effort was directed to understanding the source and parametric variations of destabilizing fluid forces. Later various components of the flow in a high speed turbopump were investigated. And finally, some ameliorative measures and their effectiveness were examined. This paper reviews this body of knowledge and the lessons learnt along the way

    High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 1, data analysis and results

    Full text link
    High-resolution broadband spectroscopy at near-infrared wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar. Observations of stars were performed with the “TEDI” interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec near-infrared echelle spectrograph. These are the first multidelay EDI demonstrations on starlight, as earlier measurements used a single delay or laboratory sources. We demonstrate very high (10×) resolution boost, from original 2700 to 27,000 with current set of delays (up to 3 cm), well beyond the classical limits enforced by the slit width and detector pixel Nyquist limit. Significantly, the EDI used with multiple delays rather than a single delay as used previously yields an order of magnitude or more improvement in the stability against native spectrograph point spread function (PSF) drifts along the dispersion direction. We observe a dramatic (20×) reduction in sensitivity to PSF shift using our standard processing. A recently realized method of further reducing the PSF shift sensitivity to zero is described theoretically and demonstrated in a simple simulation which produces a 350× times reduction. We demonstrate superb rejection of fixed pattern noise due to bad detector pixels—EDI only responds to changes in pixel intensity synchronous to applied dithering. This part 1 describes data analysis, results, and instrument noise. A section on theoretical photon limited sensitivity is in a companion paper, part 2
    • …
    corecore