86 research outputs found

    On Revenue Monotonicity in Combinatorial Auctions

    Full text link
    Along with substantial progress made recently in designing near-optimal mechanisms for multi-item auctions, interesting structural questions have also been raised and studied. In particular, is it true that the seller can always extract more revenue from a market where the buyers value the items higher than another market? In this paper we obtain such a revenue monotonicity result in a general setting. Precisely, consider the revenue-maximizing combinatorial auction for mm items and nn buyers in the Bayesian setting, specified by a valuation function vv and a set FF of nmnm independent item-type distributions. Let REV(v,F)REV(v, F) denote the maximum revenue achievable under FF by any incentive compatible mechanism. Intuitively, one would expect that REV(v,G)REV(v,F)REV(v, G)\geq REV(v, F) if distribution GG stochastically dominates FF. Surprisingly, Hart and Reny (2012) showed that this is not always true even for the simple case when vv is additive. A natural question arises: Are these deviations contained within bounds? To what extent may the monotonicity intuition still be valid? We present an {approximate monotonicity} theorem for the class of fractionally subadditive (XOS) valuation functions vv, showing that REV(v,G)cREV(v,F)REV(v, G)\geq c\,REV(v, F) if GG stochastically dominates FF under vv where c>0c>0 is a universal constant. Previously, approximate monotonicity was known only for the case n=1n=1: Babaioff et al. (2014) for the class of additive valuations, and Rubinstein and Weinberg (2015) for all subaddtive valuation functions.Comment: 10 page

    Approximation Schemes for a Unit-Demand Buyer with Independent Items via Symmetries

    Full text link
    We consider a revenue-maximizing seller with nn items facing a single buyer. We introduce the notion of symmetric menu complexity of a mechanism, which counts the number of distinct options the buyer may purchase, up to permutations of the items. Our main result is that a mechanism of quasi-polynomial symmetric menu complexity suffices to guarantee a (1ε)(1-\varepsilon)-approximation when the buyer is unit-demand over independent items, even when the value distribution is unbounded, and that this mechanism can be found in quasi-polynomial time. Our key technical result is a polynomial time, (symmetric) menu-complexity-preserving black-box reduction from achieving a (1ε)(1-\varepsilon)-approximation for unbounded valuations that are subadditive over independent items to achieving a (1O(ε))(1-O(\varepsilon))-approximation when the values are bounded (and still subadditive over independent items). We further apply this reduction to deduce approximation schemes for a suite of valuation classes beyond our main result. Finally, we show that selling separately (which has exponential menu complexity) can be approximated up to a (1ε)(1-\varepsilon) factor with a menu of efficient-linear (f(ε)n)(f(\varepsilon) \cdot n) symmetric menu complexity.Comment: FOCS 201

    Computing Stable Coalitions: Approximation Algorithms for Reward Sharing

    Full text link
    Consider a setting where selfish agents are to be assigned to coalitions or projects from a fixed set P. Each project k is characterized by a valuation function; v_k(S) is the value generated by a set S of agents working on project k. We study the following classic problem in this setting: "how should the agents divide the value that they collectively create?". One traditional approach in cooperative game theory is to study core stability with the implicit assumption that there are infinite copies of one project, and agents can partition themselves into any number of coalitions. In contrast, we consider a model with a finite number of non-identical projects; this makes computing both high-welfare solutions and core payments highly non-trivial. The main contribution of this paper is a black-box mechanism that reduces the problem of computing a near-optimal core stable solution to the purely algorithmic problem of welfare maximization; we apply this to compute an approximately core stable solution that extracts one-fourth of the optimal social welfare for the class of subadditive valuations. We also show much stronger results for several popular sub-classes: anonymous, fractionally subadditive, and submodular valuations, as well as provide new approximation algorithms for welfare maximization with anonymous functions. Finally, we establish a connection between our setting and the well-studied simultaneous auctions with item bidding; we adapt our results to compute approximate pure Nash equilibria for these auctions.Comment: Under Revie

    An O(log log m) prophet inequality for subadditive combinatorial auctions

    Get PDF
    Prophet inequalities compare the expected performance of an online algorithm for a stochastic optimization problem to the expected optimal solution in hindsight. They are a major alternative to classic worst-case competitive analysis, of particular importance in the design and analysis of simple (posted-price) incentive compatible mechanisms with provable approximation guarantees. A central open problem in this area concerns subadditive combinatorial auctions. Here n agents with subadditive valuation functions compete for the assignment of m items. The goal is to find an allocation of the items that maximizes the total value of the assignment. The question is whether there exists a prophet inequality for this problem that significantly beats the best known approximation factor of O(log m). We make major progress on this question by providing an O(log log m) prophet inequality. Our proof goes through a novel primal-dual approach. It is also constructive, resulting in an online policy that takes the form of static and anonymous item prices that can be computed in polynomial time given appropriate query access to the valuations. As an application of our approach, we construct a simple and incentive compatible mechanism based on posted prices that achieves an O(log log m) approximation to the optimal revenue for subadditive valuations under an item-independence assumption

    Learning Multi-item Auctions with (or without) Samples

    Full text link
    We provide algorithms that learn simple auctions whose revenue is approximately optimal in multi-item multi-bidder settings, for a wide range of valuations including unit-demand, additive, constrained additive, XOS, and subadditive. We obtain our learning results in two settings. The first is the commonly studied setting where sample access to the bidders' distributions over valuations is given, for both regular distributions and arbitrary distributions with bounded support. Our algorithms require polynomially many samples in the number of items and bidders. The second is a more general max-min learning setting that we introduce, where we are given "approximate distributions," and we seek to compute an auction whose revenue is approximately optimal simultaneously for all "true distributions" that are close to the given ones. These results are more general in that they imply the sample-based results, and are also applicable in settings where we have no sample access to the underlying distributions but have estimated them indirectly via market research or by observation of previously run, potentially non-truthful auctions. Our results hold for valuation distributions satisfying the standard (and necessary) independence-across-items property. They also generalize and improve upon recent works, which have provided algorithms that learn approximately optimal auctions in more restricted settings with additive, subadditive and unit-demand valuations using sample access to distributions. We generalize these results to the complete unit-demand, additive, and XOS setting, to i.i.d. subadditive bidders, and to the max-min setting. Our results are enabled by new uniform convergence bounds for hypotheses classes under product measures. Our bounds result in exponential savings in sample complexity compared to bounds derived by bounding the VC dimension, and are of independent interest.Comment: Appears in FOCS 201

    Simple vs. Optimal Mechanism Design

    Get PDF
    Mechanism design has found various applications in today\u27s economy, such as ad auctions and online markets. The goal of mechanism design is to design a mechanism or system such that a group of strategic agents are incentivized to choose actions that also help achieve the designer’s objective. However, in many of the mechanism design problems, the theoretically optimal mechanisms are complex and randomized, while mechanisms used in practice are usually simple and deterministic. The focus of this thesis is to resolve the discrepancy between theory and practice by studying the following questions: Are the mechanisms used in practice close to optimal? Can we design simple mechanisms to approximate the optimal one? In this thesis we focus on two important mechanism design settings: multi-item auctions and two-sided markets. We show that in both of the settings, there are indeed simple and approximately-optimal mechanisms. Following Myerson\u27s seminal result, which provides a simple and revenue-optimal auction when a seller is selling a singleitem to multiple buyers, there has been extensive research effort on maximizing revenue in multi-item auctions. However, the revenue-optimal mechanism is proved to be complex and randomized. We provide a unified framework to approximate the optimal revenue in a fairly general setting of multi-item auctions with multiple buyers. Our result substantially improves the results in the literature and applies to broader cases. Another line of works in this thesis focuses on two-sided markets, where sellers also participate in the mechanism and have their own costs. The impossibility result by Myerson and Satterthwaite shows that even in the simplist bilateral trade setting (1 buyer, 1 seller, 1 item), the full welfare is not achievable by a truthful mechanism that does not run a deficit. In this thesis we focus on a more challenging objective gains from trade --- the increment of the welfare, and provide simple mechanisms that approximate the optimal gains from trade, in bilateral trade and many other two-sided market settings

    Optimal Multi-Unit Mechanisms with Private Demands

    Full text link
    In the multi-unit pricing problem, multiple units of a single item are for sale. A buyer's valuation for nn units of the item is vmin{n,d}v \min \{ n, d\} , where the per unit valuation vv and the capacity dd are private information of the buyer. We consider this problem in the Bayesian setting, where the pair (v,d)(v,d) is drawn jointly from a given probability distribution. In the \emph{unlimited supply} setting, the optimal (revenue maximizing) mechanism is a pricing problem, i.e., it is a menu of lotteries. In this paper we show that under a natural regularity condition on the probability distributions, which we call \emph{decreasing marginal revenue}, the optimal pricing is in fact \emph{deterministic}. It is a price curve, offering ii units of the item for a price of pip_i, for every integer ii. Further, we show that the revenue as a function of the prices pip_i is a \emph{concave} function, which implies that the optimum price curve can be found in polynomial time. This gives a rare example of a natural multi-parameter setting where we can show such a clean characterization of the optimal mechanism. We also give a more detailed characterization of the optimal prices for the case where there are only two possible demands
    corecore