37 research outputs found

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Enhancing wireless local area networks by leveraging diverse frequency resources

    Get PDF
    In this thesis, signal propagation variations that are experience over the frequency resources of IEEE 802.11 Wireless Local Area Networks (WLANs) are studied. It is found that exploitation of these variations can improve several aspects of wireless communication systems. To this aim, frequency varying behavior is addressed at two different levels. First, the intra-channel scale is considered, i.e. variations over the continuous frequency block that a device uses for a cohesive transmission. Variations at this level are well known but current wireless systems restrict to basic equalization techniques to balance the received signal. In contrast, this work shows that more fine grained adaptation to these differences can accomplish throughput and connection range gains. Second, multi-frequency band enabled devices that access widely differing frequency resources in the millimeter wave range as well as in the microwave range are analyzed. These devices that are expected to follow the IEEE 802.11ad specification experience intense propagation variations over their frequency resources. Thus, a part of this thesis revises, the theoretical specification of the IEEE 802.11ad standard and complements it by a measurement study of first generation millimeter wave devices. This study reveals deficiencies of first generation millimeter wave systems, whose improvement will pose new challenges to the protocol design of future generation systems. These challenges are than addressed by novel methods that leverage from frequency varying propagation characteristics. The first method, improves the beam training process of millimeter wave networks, that need highly directional, though electronically steered, transmissions to overcome increased free space attenuation. By leveraging from omni-directional signal propagation at the microwave bands, efficient direction interference is utilized to provide information to millimeter wave interfaces and replace brute force direction testing. Second, deafness effects at the millimeter wave band, which impact IEEE 802.11 channel access methods are addressed. As directional communication on these bands complicates sensing the medium to be busy or idle, inefficiencies and unfairness are implied. By using coordination message exchange on the legacyWi-Fi frequencies with omnidirectional communication properties, these effects are countered. The millimeter wave bands can thus unfold their full potential, being exclusively used for high speed data frame transmission.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Ralf Steinmetz.- Secretario: Albert Banchs Roca.- Vocal: Kyle Jamieso

    Improving MIMO Performance in Wi-Fi Networks by using Collision Resolution and User Selection

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2015. 8. 김종권.Multiple-Input Multiple-Output (MIMO) technologies have emerged as a key component to increase the capacity of wireless networks. The MIMO scheme either simultaneously transmits to multiple users at a time or focuses energy towards a single user to enhance the data rate. A number of Wi-Fi standards based on MIMO technology have been developed, and recently, several commercial products have been successfully deployed on the market. Unfortunately, many commercial MIMO-based Wi-Fi products fail to fully exploit the advantages of the MIMO technology, even though the MIMO technology could play a key role in improving the wireless network performance. MIMO nodes cannot provide their higher data rates, especially when they coexist with SISO nodes. Meanwhile, in Wi-Fi networks, significant Channel State Information (CSI) feedback overhead has been obstacle to the performance of MU-MIMO transmission and user selection. Most of these problems are observed to root in the inefficient PHY and MAC design of current MIMO based Wi-Fi systems: the MAC simply abstracts the advancement of PHY technologies as a change of data rate. Hence, the benefit of new PHY technologies are either not fully exploited, or they even may harm the performance of existing network protocols. In this dissertation we introduce three co-designs of PHY/MAC layers for MIMO based Wi-Fi networks, in order to overcome the intrinsic limitations of the current MIMO based Wi-Fi network and improve the network capacity. First, we show the Interference Alignment and Cancelation (IAC) based collision resolution scheme for heterogeneous MIMO based Wi-Fi systems. Second, we present a practical user selection scheme for MU-MIMO Wi-Fi networks. Finally, we improve the proposed user selection scheme by exploiting a frequency domain signaling scheme and using a capacity gain as a selection metric. We have validated the feasibility and performance of our designs using extensive analysis, simulation and USRP testbed implementation.ABSTRACT i CONTENTS iii LIST OF FIGURES vi LIST OF TABLES ix CHAPTER I: Introduction 1 1.1 Background and Motivation 1 1.2 Goal and Contribution 8 1.3 Thesis Organization 9 CHAPTER II: MIMO based Collision Resolution 10 2.1 Introduction 10 2.2 Related Work 12 2.3 Background 14 2.3.1 Packet Collision Problems in MIMO Networks 14 2.3.2 IAC 15 2.4 802.11mc 17 2.4.1 Protocol Overview 17 2.4.2 Packet Collision Resolution via IAC 19 2.4.3 Collisions between Multiple CTSs 22 2.4.4 Optimal p 23 2.4.5 Discussion 28 2.5 USRP Experiments 33 2.5.1 Micro Benchmark 33 2.5.2 Macro Benchmark 39 2.6 NS-2 Simulations 43 2.6.1 Setting 43 2.6.2 Packet Loss Rate due to Collision 44 2.6.3 CWMin 45 2.6.4 Data Size 46 2.6.5 Number of Node Pairs (N) 49 2.6.6 Proportion of MIMO Receivers (q_2) 50 2.6.7 Postamble Probability (p) 52 2.6.8 Performance in Dynamic Network Configurations 54 2.7 Conclusion 55 CHAPTER III: User Selection for MU-MIMO Transmission 56 3.1 Introduction 56 3.2 Related Work 58 3.3 Background 60 3.3.1 System Model 60 3.3.2 User Selection 61 3.4 802.11ac+ 62 3.4.1 Overview 62 3.4.2 Channel Hint Broadcasting 63 3.4.3 Active CSI Feedback 66 3.5 Fair Scheduling 72 3.5.1 RR-11ac+ 72 3.5.2 PF-11ac+ 73 3.5.3 Summary 73 3.6 Performance Evaluation 75 3.6.1 Setting 75 3.6.2 802.11ac+ Performance 76 3.6.3 Fair Scheduling Protocol Performance 79 3.7 Conclusion 82 CHAPTER IV: Distributed Frequency Domain User Selection 83 4.1 Introduction 83 4.2 Motivation 84 4.3 DiFuse 88 4.3.1 Protocol Overview 88 4.3.2 Distributed Feedback Contention 89 4.3.3 Slot Threshold Design 95 4.3.4 Proportional Fair Selection 97 4.3.5 Discussions 98 4.4 Performance Evaluation 101 4.4.1 Micro Benchmark 101 4.4.2 System-Level Performance 105 4.5 Conclusion 113 CHAPTER V: Conclusion 114 BIBLIOGRAPHY 115 초 록 122Docto

    MAC/PHY Co-Design of CSMA Wireless Networks Using Software Radios.

    Full text link
    In the past decade, CSMA-based protocols have spawned numerous network standards (e.g., the WiFi family), and played a key role in improving the ubiquity of wireless networks. However, the rapid evolution of CSMA brings unprecedented challenges, especially the coexistence of different network architectures and communications devices. Meanwhile, many intrinsic limitations of CSMA have been the main obstacle to the performance of its derivatives, such as ZigBee, WiFi, and mesh networks. Most of these problems are observed to root in the abstract interface of the CSMA MAC and PHY layers --- the MAC simply abstracts the advancement of PHY technologies as a change of data rate. Hence, the benefits of new PHY technologies are either not fully exploited, or they even may harm the performance of existing network protocols due to poor interoperability. In this dissertation, we show that a joint design of the MAC/PHY layers can achieve a substantially higher level of capacity, interoperability and energy efficiency than the weakly coupled MAC/PHY design in the current CSMA wireless networks. In the proposed MAC/PHY co-design, the PHY layer exposes more states and capabilities to the MAC, and the MAC performs intelligent adaptation to and control over the PHY layer. We leverage the reconfigurability of software radios to design smart signal processing algorithms that meet the challenge of making PHY capabilities usable by the MAC layer. With the approach of MAC/PHY co-design, we have revisited the primitive operations of CSMA (collision avoidance, carrier signaling, carrier sensing, spectrum access and transmitter cooperation), and overcome its limitations in relay and broadcast applications, coexistence of heterogeneous networks, energy efficiency, coexistence of different spectrum widths, and scalability for MIMO networks. We have validated the feasibility and performance of our design using extensive analysis, simulation and testbed implementation.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/95944/1/xyzhang_1.pd

    Sub-GHz LPWAN network coexistence, management and virtualization : an overview and open research challenges

    Get PDF
    The IoT domain is characterized by many applications that require low-bandwidth communications over a long range, at a low cost and at low power. Low power wide area networks (LPWANs) fulfill these requirements by using sub-GHz radio frequencies (typically 433 or 868 MHz) with typical transmission ranges in the order of 1 up to 50 km. As a result, a single base station can cover large areas and can support high numbers of connected devices (> 1000 per base station). Notorious initiatives in this domain are LoRa, Sigfox and the upcoming IEEE 802.11ah (or "HaLow") standard. Although these new technologies have the potential to significantly impact many IoT deployments, the current market is very fragmented and many challenges exists related to deployment, scalability, management and coexistence aspects, making adoption of these technologies difficult for many companies. To remedy this, this paper proposes a conceptual framework to improve the performance of LPWAN networks through in-network optimization, cross-technology coexistence and cooperation and virtualization of management functions. In addition, the paper gives an overview of state of the art solutions and identifies open challenges for each of these aspects

    Practical interference mitigation for Wi-Fi systems

    Get PDF
    Wi-Fi's popularity is also its Achilles' heel since in the dense deployments of multiple Wi-Fi networks typical in urban environments, concurrent transmissions interfere. The advent of networked devices with multiple antennas allows new ways to improve Wi-Fi's performance: a host can align the phases of the signals either received at or transmitted from its antennas so as to either maximize the power of the signal of interest through beamforming or minimize the power of interference through nulling. Theory predicts that these techniques should enable concurrent transmissions by proximal sender-receiver pairs, thus improving capacity. Yet practical challenges remain. Hardware platform limitations can prevent precise measurement of the wireless channel, or limit the accuracy of beamforming and nulling. The interaction between nulling and Wi-Fi's OFDM modulation, which transmits tranches of a packet's bits on distinct subcarriers, is subtle and can sacrifice the capacity gain expected from nulling. And in deployments where Wi-Fi networks are independently administered, APs must efficiently share channel measurements and coordinate their transmissions to null effectively. In this thesis, I design and experimentally evaluate beamforming and nulling techniques for use in Wi-Fi networks that address the aforementioned practical challenges. My contributions include: - Cone of Silence (CoS): a system that allows a Wi-Fi AP equipped with a phased-array antenna but only a single 802.11g radio to mitigate interference from senders other than its intended one, thus boosting throughput; - Cooperative Power Allocation (COPA): a system that efficiently shares channel measurements and coordinates transmissions between independent APs, and cooperatively allocates power so as to render received power across OFDM subcarriers flat at each AP's receiver, thus boosting throughput; - Power Allocation for Distributed MIMO (PADM): a system that leverages intelligent power allocation to mitigate inter-stream interference in distributed MIMO wireless networks, thus boosting throughput

    Designing Wireless Networks for Delay-Sensitive Internet of Things

    Get PDF
    Internet of Things (IoT) applications have stringent requirements on the wireless network delay, but have to share and compete for the limited bandwidth with other wireless traffic. Traditional schemes adopt various QoS-aware traffic scheduling techniques, but fail when the amount of network traffic further increases. In addition, CSMA with collision avoidance (CSMA/CA) mechanism enables the coexistence of multiple wireless links but avoids concurrent transmissions, yielding severe channel access delay on the delay-sensitive traffic when the channel is busy. To address the aforementioned limitations, we present two novel designs of wireless side channel, which operate concurrently with the existing wireless network channel without occupying extra spectrum, but dedicates to real-time traffic. Our key insight of realizing such side channel is to exploit the excessive SNR margin in the wireless network by encoding data as patterned interference. First, we design such patterned interference in form of energy erasure over specific subcarriers in OFDM systems. Delay-sensitive messages can be delivered simultaneously along with other traffic from the same transmitter, which reduces the network queuing delay. Furthermore, we propose EasyPass, another side channel design that encodes data in the same OFDM scheme as being used by the main channel, but using weaker power and narrower frequency bands. By adapting the side channel's transmit power under the main channel's SNR margin, the simultaneous main channel transmission would suffer little degradation. EasyPass reduces the channel access delay by providing extra transmission opportunities when the channel is occupied by other links. Last, we present a novel modulation design that transforms the choices of link rate adaptation from discrete to continuous. With minimum extra overhead, it improves the network throughput and therefore reduces the network delay

    Pushing the Limits of Indoor Localization in Today’s Wi-Fi Networks

    Get PDF
    Wireless networks are ubiquitous nowadays and play an increasingly important role in our everyday lives. Many emerging applications including augmented reality, indoor navigation and human tracking, rely heavily on Wi-Fi, thus requiring an even more sophisticated network. One key component for the success of these applications is accurate localization. While we have GPS in the outdoor environment, indoor localization at a sub-meter granularity remains challenging due to a number of factors, including the presence of strong wireless multipath reflections indoors and the burden of deploying and maintaining any additional location service infrastructure. On the other hand, Wi-Fi technology has developed significantly in the last 15 years evolving from 802.11b/a/g to the latest 802.11n and 802.11ac standards. Single user multiple-input, multiple-output (SU-MIMO) technology has been adopted in 802.11n while multi-user MIMO is introduced in 802.11ac to increase throughput. In Wi-Fi’s development, one interesting trend is the increasing number of antennas attached to a single access point (AP). Another trend is the presence of frequency-agile radios and larger bandwidths in the latest 802.11n/ac standards. These opportunities can be leveraged to increase the accuracy of indoor wireless localization significantly in the two systems proposed in this thesis: ArrayTrack employs multi-antenna APs for angle-of-arrival (AoA) information to localize clients accurately indoors. It is the first indoor Wi-Fi localization system able to achieve below half meter median accuracy. Innovative multipath identification scheme is proposed to handle the challenging multipath issue in indoor environment. ArrayTrack is robust in term of signal to noise ratio, collision and device orientation. ArrayTrack does not require any offline training and the computational load is small, making it a great candidate for real-time location services. With six 8-antenna APs, ArrayTrack is able to achieve a median error of 23 cm indoors in the presence of strong multipath reflections in a typical office environment. ToneTrack is a fine-grained indoor localization system employing time difference of arrival scheme (TDoA). ToneTrack uses a novel channel combination algorithm to increase effective bandwidth without increasing the radio’s sampling rate, for higher resolution time of arrival (ToA) information. A new spectrum identification scheme is proposed to retrieve useful information from a ToA profile even when the overall profile is mostly inaccurate. The triangle inequality property is then applied to detect and discard the APs whose direct path is 100% blocked. With a combination of only three 20 MHz channels in the 2.4 GHz band, ToneTrack is able to achieve below one meter median error, outperforming the traditional super-resolution ToA schemes significantly

    Low-Complexity Multi-User MIMO Algorithms for mmWave WLANs

    Get PDF
    Very high throughput and high-efficiency wireless local area networks (WLANs) have become essential for today's significant global Internet traffic and the expected significant global increase of public WiFi hotspots. Total Internet traffic is predicted to expand 3.7-fold from 2017 to 2022. In 2017, 53% of overall Internet traffic used by WiFi networks, and that number is expected to increase to 56.8% by 2022. Furthermore, 80% of overall Internet traffic is expected to be video traffic by 2022, up from 70% in 2017. WiFi networks are also expected to move towards denser deployment scenarios, such as stadiums, large office buildings, and airports, with very high data rate applications, such as ultra-high definition video wireless streaming. Thus, in order to meet the predicted growth of wireless traffic and the number of WiFi networks in the world, an efficient Internet access solution is required for the current IEEE 802.11 standards. Millimeter wave (mmWave) communication technology is expected to play a crucial role in future wireless networks with large user populations because of the large spectrum band it can provide. To further improve spectrum efficiency over mmWave bands in WLANs with large numbers of users, the IEEE 802.11ay standard was developed from the traditional IEEE 802.11ad standard, aiming to support multi-user MIMO. Propagation challenges associated with mmWave bands necessitate the use of analog beamforming (BF) technologies that employ directional transmissions to determine the optimal sector beam between a transmitter and a receiver. However, the multi-user MIMO is not exploited, since analog BF is limited to a single-user, single-transmission. The computational complexity of achieving traditional multi-user MIMO BF methods, such as full digital BF, in the mmWave systems becomes significant due to the hardware constraints. Our research focuses on how to effectively and efficiently realize multi-user MIMO transmission to improve spectrum efficiency over the IEEE 802.11ay mmWave band system while also resolving the computational complexity challenges for achieving a multi-user MIMO in mmWave systems. This thesis focuses on MAC protocol algorithms and analysis of the IEEE 802.11ay mmWave WLANs to provide multi-user MIMO support in various scenarios to improve the spectrum efficiency and system throughput. Specifically, from a downlink single-hop scenario perspective, a VG algorithm is proposed to schedule simultaneous downlink transmission links while mitigating the multi-user interference with no additional computational complexity. From a downlink multi-hop scenario perspective, a low-complexity MHVG algorithm is conducted to realize simultaneous transmissions and improve the network performance by taking advantage of the spatial reuse in a dense network. The proposed MHVG algorithm permits simultaneous links scheduling and mitigates both the multi-user interference and co-channel interference based only on analog BF information, without the necessity for feedback overhead, such as channel state information (CSI). From an uplink scenario perspective, a low-complexity user selection algorithm, HBF-VG, incorporates user selection with the HBF algorithm to achieve simultaneous uplink transmissions for IEEE 802.11ay mmWave WLANs. With the HBF-VG algorithm, the users can be selected based on an orthogonality criterion instead of collecting CSI from all potential users. We optimize the digital BF to mitigate the residual interference among selected users. Extensive analytical and simulation evaluations are provided to validate the performance of the proposed algorithms with respect to average throughput per time slot, average network throughput, average sum-rate, energy efficiency, signal-to-interference-plus-noise ratio (SINR), and spatial multiplexing gain
    corecore