1,092 research outputs found

    MIMO PID Controller Tuning Method for Quadrotor Based on LQR/LQG Theory

    Get PDF
    In this work, a new pre-tuning multivariable PID (Proportional Integral Derivative) controllers method for quadrotors is put forward. A procedure based on LQR/LQG (Linear Quadratic Regulator/Gaussian) theory is proposed for attitude and altitude control, which suposes a considerable simplification of the design problem due to only one pretuning parameter being used. With the aim to analyze the performance and robustness of the proposed method, a non-linear mathematical model of the DJI-F450 quadrotor is employed, where rotors dynamics, together with sensors drift/bias properties and noise characteristics of low-cost commercial sensors typically used in this type of applications are considered. In order to estimate the state vector and compensate bias/drift effects in the measures, a combination of filtering and data fusion algorithms (Kalman filter and Madgwick algorithm for attitude estimation) are proposed and implemented. Performance and robustness analysis of the control system is carried out by employing numerical simulations, which take into account the presence of uncertainty in the plant model and external disturbances. The obtained results show the proposed controller design method for multivariable PID controller is robust with respect to: (a) parametric uncertainty in the plant model, (b) disturbances acting at the plant input, (c) sensors measurement and estimation errors

    Intelligent methods for complex systems control engineering

    Get PDF
    This thesis proposes an intelligent multiple-controller framework for complex systems that incorporates a fuzzy logic based switching and tuning supervisor along with a neural network based generalized learning model (GLM). The framework is designed for adaptive control of both Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) complex systems. The proposed methodology provides the designer with an automated choice of using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID structure based (simultaneous) Pole and Zero Placement controller. The switching decisions between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using the fuzzy logic based supervisor operating at the highest level of the system. The fuzzy supervisor is also employed to tune the parameters of the multiple-controller online in order to achieve the desired system performance. The GLM for modelling complex systems assumes that the plant is represented by an equivalent model consisting of a linear time-varying sub-model plus a learning nonlinear sub-model based on Radial Basis Function (RBF) neural network. The proposed control design brings together the dominant advantages of PID controllers (such as simplicity in structure and implementation) and the desirable attributes of Pole and Zero Placement controllers (such as stable set-point tracking and ease of parameters’ tuning). Simulation experiments using real-world nonlinear SISO and MIMO plant models, including realistic nonlinear vehicle models, demonstrate the effectiveness of the intelligent multiple-controller with respect to tracking set-point changes, achieve desired speed of response, prevent system output overshooting and maintain minimum variance input and output signals, whilst penalising excessive control actions

    A Unified Framework for the Study of Anti-Windup Designs

    Get PDF
    We present a unified framework for the study of linear time-invariant (LTI) systems subject to control input nonlinearities. The framework is based on the following two-step design paradigm: "Design the linear controller ignoring control input nonlinearities and then add anti-windup bumpless transfer (AWBT) compensation to minimize the adverse eflects of any control input nonlinearities on closed loop performance". The resulting AWBT compensation is applicable to multivariable controllers of arbitrary structure and order. All known LTI anti-windup and/or bumpless transfer compensation schemes are shown to be special cases of this framework. It is shown how this framework can handle standard issues such as the analysis of stability and performance with or without uncertainties in the plant model. The actual analysis of stability and performance, and robustness issues are problems in their own right and hence not detailed here. The main result is the unification of existing schemes for AWBT compensation under a general framework

    On the Analysis and Synthesis of Wind Turbine Side-Side Tower Load Control via Demodulation

    Full text link
    As wind turbine power capacities continue to rise, taller and more flexible tower designs are needed for support. These designs often have the tower's natural frequency in the turbine's operating regime, increasing the risk of resonance excitation and fatigue damage. Advanced load-reducing control methods are needed to enable flexible tower designs that consider the complex dynamics of flexible turbine towers during partial-load operation. This paper proposes a novel modulation-demodulation control (MDC) strategy for side-side tower load reduction driven by the varying speed of the turbine. The MDC method demodulates the periodic content at the once-per-revolution (1P) frequency in the tower motion measurements into two orthogonal channels. The proposed scheme extends the conventional tower controller by augmentation of the MDC contribution to the generator torque signal. A linear analysis framework into the multivariable system in the demodulated domain reveals varying degrees of coupling at different rotational speeds and a gain sign flip. As a solution, a decoupling strategy has been developed, which simplifies the controller design process and allows for a straightforward (but highly effective) diagonal linear time-invariant controller design. The high-fidelity OpenFAST wind turbine software evaluates the proposed controller scheme, demonstrating effective reduction of the 1P periodic loading and the tower's natural frequency excitation in the side-side tower motion.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Appropriate Realisation of MIMO Gain-Scheduled Controllers

    Get PDF
    The dynamic characteristics of a controller designed by the gain-scheduling approach can be strongly dependent on the realisation adopted; that is, the manner in which the local linear controller designs are combined to obtain a nonlocal controller. The purpose of the present paper is to investigate the choice of appropriate realisations for general MIMO gain-scheduled controllers. An extended local linear equivalence condition for MIMO gain-scheduled nonlinear controllers is proposed which minimises the controller nonlinearity. It is shown that, with few exceptions, it is possible to realise all gain-scheduled controllers as nonlinear controllers satisfying the extended local linear equivalence condition and requiring the controller to do so is not at all restrictive

    NON-LINEAR MODEL PREDICTIVE CONTROL STRATEGIES FOR PROCESS PLANTS USING SOFT COMPUTING APPROACHES

    Get PDF
    The developments of advanced non-linear control strategies have attracted a considerable research interests over the past decades especially in process control. Rather than an absolute reliance on mathematical models of process plants which often brings discrepancies especially owing to design errors and equipment degradation, non-linear models are however required because they provide improved prediction capabilities but they are very difficult to derive. In addition, the derivation of the global optimal solution gets more difficult especially when multivariable and non-linear systems are involved. Hence, this research investigates soft computing techniques for the implementation of a novel real time constrained non-linear model predictive controller (NMPC). The time-frequency localisation characteristics of wavelet neural network (WNN) were utilised for the non-linear models design using system identification approach from experimental data and improve upon the conventional artificial neural network (ANN) which is prone to low convergence rate and the difficulties in locating the global minimum point during training process. Salient features of particle swarm optimisation and a genetic algorithm (GA) were combined to optimise the network weights. Real time optimisation occurring at every sampling instant is achieved using a GA to deliver results both in simulations and real time implementation on coupled tank systems with further extension to a complex quadruple tank process in simulations. The results show the superiority of the novel WNN-NMPC approach in terms of the average controller energy and mean squared error over the conventional ANN-NMPC strategies and PID control strategy for both SISO and MIMO systemsPetroleum Training Development Fun
    • …
    corecore