5,690 research outputs found

    Many projectively unique polytopes

    Full text link
    We construct an infinite family of 4-polytopes whose realization spaces have dimension smaller or equal to 96. This in particular settles a problem going back to Legendre and Steinitz: whether and how the dimension of the realization space of a polytope is determined/bounded by its f-vector. From this, we derive an infinite family of combinatorially distinct 69-dimensional polytopes whose realization is unique up to projective transformation. This answers a problem posed by Perles and Shephard in the sixties. Moreover, our methods naturally lead to several interesting classes of projectively unique polytopes, among them projectively unique polytopes inscribed to the sphere. The proofs rely on a novel construction technique for polytopes based on solving Cauchy problems for discrete conjugate nets in S^d, a new Alexandrov--van Heijenoort Theorem for manifolds with boundary and a generalization of Lawrence's extension technique for point configurations.Comment: 44 pages, 18 figures; to appear in Invent. mat

    Realization spaces of 4-polytopes are universal

    Full text link
    Let P⊂RdP\subset\R^d be a dd-dimensional polytope. The {\em realization space} of~PP is the space of all polytopes P′⊂RdP'\subset\R^d that are combinatorially equivalent to~PP, modulo affine transformations. We report on work by the first author, which shows that realization spaces of \mbox{4-dimensional} polytopes can be ``arbitrarily bad'': namely, for every primary semialgebraic set~VV defined over~Z\Z, there is a 44-polytope P(V)P(V) whose realization space is ``stably equivalent'' to~VV. This implies that the realization space of a 44-polytope can have the homotopy type of an arbitrary finite simplicial complex, and that all algebraic numbers are needed to realize all 44- polytopes. The proof is constructive. These results sharply contrast the 33-dimensional case, where realization spaces are contractible and all polytopes are realizable with integral coordinates (Steinitz's Theorem). No similar universality result was previously known in any fixed dimension.Comment: 10 page

    Symmetry Matters for Sizes of Extended Formulations

    Full text link
    In 1991, Yannakakis (J. Comput. System Sci., 1991) proved that no symmetric extended formulation for the matching polytope of the complete graph K_n with n nodes has a number of variables and constraints that is bounded subexponentially in n. Here, symmetric means that the formulation remains invariant under all permutations of the nodes of K_n. It was also conjectured in the paper mentioned above that "asymmetry does not help much," but no corresponding result for general extended formulations has been found so far. In this paper we show that for the polytopes associated with the matchings in K_n with log(n) (rounded down) edges there are non-symmetric extended formulations of polynomial size, while nevertheless no symmetric extended formulations of polynomial size exist. We furthermore prove similar statements for the polytopes associated with cycles of length log(n) (rounded down). Thus, with respect to the question for smallest possible extended formulations, in general symmetry requirements may matter a lot. Compared to the extended abtract that has appeared in the Proceedings of IPCO XIV at Lausanne, this paper does not only contain proofs that had been ommitted there, but it also presents slightly generalized and sharpened lower bounds.Comment: 24 pages; incorporated referees' comments; to appear in: SIAM Journal on Discrete Mathematic

    Brick polytopes, lattice quotients, and Hopf algebras

    Get PDF
    This paper is motivated by the interplay between the Tamari lattice, J.-L. Loday's realization of the associahedron, and J.-L. Loday and M. Ronco's Hopf algebra on binary trees. We show that these constructions extend in the world of acyclic kk-triangulations, which were already considered as the vertices of V. Pilaud and F. Santos' brick polytopes. We describe combinatorially a natural surjection from the permutations to the acyclic kk-triangulations. We show that the fibers of this surjection are the classes of the congruence ≡k\equiv^k on Sn\mathfrak{S}_n defined as the transitive closure of the rewriting rule UacV1b1⋯VkbkW≡kUcaV1b1⋯VkbkWU ac V_1 b_1 \cdots V_k b_k W \equiv^k U ca V_1 b_1 \cdots V_k b_k W for letters a<b1,…,bk<ca < b_1, \dots, b_k < c and words U,V1,…,Vk,WU, V_1, \dots, V_k, W on [n][n]. We then show that the increasing flip order on kk-triangulations is the lattice quotient of the weak order by this congruence. Moreover, we use this surjection to define a Hopf subalgebra of C. Malvenuto and C. Reutenauer's Hopf algebra on permutations, indexed by acyclic kk-triangulations, and to describe the product and coproduct in this algebra and its dual in term of combinatorial operations on acyclic kk-triangulations. Finally, we extend our results in three directions, describing a Cambrian, a tuple, and a Schr\"oder version of these constructions.Comment: 59 pages, 32 figure
    • …
    corecore