1,422 research outputs found

    Verification for Timed Automata extended with Unbounded Discrete Data Structures

    Full text link
    We study decidability of verification problems for timed automata extended with unbounded discrete data structures. More detailed, we extend timed automata with a pushdown stack. In this way, we obtain a strong model that may for instance be used to model real-time programs with procedure calls. It is long known that the reachability problem for this model is decidable. The goal of this paper is to identify subclasses of timed pushdown automata for which the language inclusion problem and related problems are decidable

    Which Regular Expression Patterns are Hard to Match?

    Full text link
    Regular expressions constitute a fundamental notion in formal language theory and are frequently used in computer science to define search patterns. A classic algorithm for these problems constructs and simulates a non-deterministic finite automaton corresponding to the expression, resulting in an O(mn)O(mn) running time (where mm is the length of the pattern and nn is the length of the text). This running time can be improved slightly (by a polylogarithmic factor), but no significantly faster solutions are known. At the same time, much faster algorithms exist for various special cases of regular expressions, including dictionary matching, wildcard matching, subset matching, word break problem etc. In this paper, we show that the complexity of regular expression matching can be characterized based on its {\em depth} (when interpreted as a formula). Our results hold for expressions involving concatenation, OR, Kleene star and Kleene plus. For regular expressions of depth two (involving any combination of the above operators), we show the following dichotomy: matching and membership testing can be solved in near-linear time, except for "concatenations of stars", which cannot be solved in strongly sub-quadratic time assuming the Strong Exponential Time Hypothesis (SETH). For regular expressions of depth three the picture is more complex. Nevertheless, we show that all problems can either be solved in strongly sub-quadratic time, or cannot be solved in strongly sub-quadratic time assuming SETH. An intriguing special case of membership testing involves regular expressions of the form "a star of an OR of concatenations", e.g., [aabbc][a|ab|bc]^*. This corresponds to the so-called {\em word break} problem, for which a dynamic programming algorithm with a runtime of (roughly) O(nm)O(n\sqrt{m}) is known. We show that the latter bound is not tight and improve the runtime to O(nm0.44)O(nm^{0.44\ldots})

    Upper and lower bounds for dynamic data structures on strings

    Get PDF
    We consider a range of simply stated dynamic data structure problems on strings. An update changes one symbol in the input and a query asks us to compute some function of the pattern of length mm and a substring of a longer text. We give both conditional and unconditional lower bounds for variants of exact matching with wildcards, inner product, and Hamming distance computation via a sequence of reductions. As an example, we show that there does not exist an O(m1/2ε)O(m^{1/2-\varepsilon}) time algorithm for a large range of these problems unless the online Boolean matrix-vector multiplication conjecture is false. We also provide nearly matching upper bounds for most of the problems we consider.Comment: Accepted at STACS'1

    CCL: a portable and tunable collective communication library for scalable parallel computers

    Get PDF
    A collective communication library for parallel computers includes frequently used operations such as broadcast, reduce, scatter, gather, concatenate, synchronize, and shift. Such a library provides users with a convenient programming interface, efficient communication operations, and the advantage of portability. A library of this nature, the Collective Communication Library (CCL), intended for the line of scalable parallel computer products by IBM, has been designed. CCL is part of the parallel application programming interface of the recently announced IBM 9076 Scalable POWERparallel System 1 (SP1). In this paper, we examine several issues related to the functionality, correctness, and performance of a portable collective communication library while focusing on three novel aspects in the design and implementation of CCL: 1) the introduction of process groups, 2) the definition of semantics that ensures correctness, and 3) the design of new and tunable algorithms based on a realistic point-to-point communication model

    String Indexing for Patterns with Wildcards

    Get PDF
    We consider the problem of indexing a string tt of length nn to report the occurrences of a query pattern pp containing mm characters and jj wildcards. Let occocc be the number of occurrences of pp in tt, and σ\sigma the size of the alphabet. We obtain the following results. - A linear space index with query time O(m+σjloglogn+occ)O(m+\sigma^j \log \log n + occ). This significantly improves the previously best known linear space index by Lam et al. [ISAAC 2007], which requires query time Θ(jn)\Theta(jn) in the worst case. - An index with query time O(m+j+occ)O(m+j+occ) using space O(σk2nlogklogn)O(\sigma^{k^2} n \log^k \log n), where kk is the maximum number of wildcards allowed in the pattern. This is the first non-trivial bound with this query time. - A time-space trade-off, generalizing the index by Cole et al. [STOC 2004]. We also show that these indexes can be generalized to allow variable length gaps in the pattern. Our results are obtained using a novel combination of well-known and new techniques, which could be of independent interest
    corecore