45,166 research outputs found

    A Minimax Converse for Quantum Channel Coding

    Full text link
    We prove a one-shot "minimax" converse bound for quantum channel coding assisted by positive partial transpose channels between sender and receiver. The bound is similar in spirit to the converse by Polyanskiy, Poor, and Verdu [IEEE Trans. Info. Theory 56, 2307-2359 (2010)] for classical channel coding, and also enjoys the saddle point property enabling the order of optimizations to be interchanged. Equivalently, the bound can be formulated as a semidefinite program satisfying strong duality. The convex nature of the bound implies channel symmetries can substantially simplify the optimization, enabling us to explicitly compute the finite blocklength behavior for several simple qubit channels. In particular, we find that finite blocklength converse statements for the classical erasure channel apply to the assisted quantum erasure channel, while bounds for the classical binary symmetric channel apply to both the assisted dephasing and depolarizing channels. This implies that these qubit channels inherit statements regarding the asymptotic limit of large blocklength, such as the strong converse or second-order converse rates, from their classical counterparts. Moreover, for the dephasing channel, the finite blocklength bounds are as tight as those for the classical binary symmetric channel, since coding for classical phase errors yields equivalently-performing unassisted quantum codes.Comment: merged with arXiv:1504.04617 version 1 ; see version

    Zero-error communication over adder MAC

    Full text link
    Adder MAC is a simple noiseless multiple-access channel (MAC), where if users send messages X1,…,Xh∈{0,1}nX_1,\ldots,X_h\in \{0,1\}^n, then the receiver receives Y=X1+⋯+XhY = X_1+\cdots+X_h with addition over Z\mathbb{Z}. Communication over the noiseless adder MAC has been studied for more than fifty years. There are two models of particular interest: uniquely decodable code tuples, and BhB_h-codes. In spite of the similarities between these two models, lower bounds and upper bounds of the optimal sum rate of uniquely decodable code tuple asymptotically match as number of users goes to infinity, while there is a gap of factor two between lower bounds and upper bounds of the optimal rate of BhB_h-codes. The best currently known BhB_h-codes for h≥3h\ge 3 are constructed using random coding. In this work, we study variants of the random coding method and related problems, in hope of achieving BhB_h-codes with better rate. Our contribution include the following. (1) We prove that changing the underlying distribution used in random coding cannot improve the rate. (2) We determine the rate of a list-decoding version of BhB_h-codes achieved by the random coding method. (3) We study several related problems about R\'{e}nyi entropy.Comment: An updated version of author's master thesi

    Precoding for Outage Probability Minimization on Block Fading Channels

    Get PDF
    The outage probability limit is a fundamental and achievable lower bound on the word error rate of coded communication systems affected by fading. This limit is mainly determined by two parameters: the diversity order and the coding gain. With linear precoding, full diversity on a block fading channel can be achieved without error-correcting code. However, the effect of precoding on the coding gain is not well known, mainly due to the complicated expression of the outage probability. Using a geometric approach, this paper establishes simple upper bounds on the outage probability, the minimization of which yields to precoding matrices that achieve very good performance. For discrete alphabets, it is shown that the combination of constellation expansion and precoding is sufficient to closely approach the minimum possible outage achieved by an i.i.d. Gaussian input distribution, thus essentially maximizing the coding gain.Comment: Submitted to Transactions on Information Theory on March 23, 201
    • …
    corecore