55 research outputs found

    EASR: Graph-based Framework for Energy Efficient Smart Routing in MANET using Availability Zones

    Get PDF
    Energy consumption in MobileAdhoc Network (MANET) is a topic of research from more than a decade. Althoughthere are multiple archival of literatures, that have proposed variousenergy-efficient algorithms for reducing the energy consumption to improveenergy efficiency. Establishing correct and reliable route is important designissue in MANET, but a more challenging goal is to provide energy efficientroute. But, it was observed that majority of such energy efficient routingprotocols just give symptomatic solution which addresses and mitigated theenergy issues overlooking various associated issues like quality of services.Moreover, in majority of research previous studies it is found that AODV andDSDV are highly in adoption rate among the researcher for solving energy issuesusing routing protocols. This manuscript after reviewing some of thesignificant literatures in past explored issues in existing AODV and DSDVand  proposes a novel energy efficientrouting protocols by incorporating a new actor called availability zone. Theproposed model shows better energy efficiency and QoS compared to AODV andDSDV

    Clustering Opportunistic Ant-based Routing Protocol for Wireless Sensor Networks

    Get PDF
    The wireless Sensor Networks (WSNs) have a wide range of applications in many ereas, including many kinds of uses such as environmental monitoring and chemical detection. Due to the restriction of energy supply, the improvement of routing performance is the major motivation in WSNs. We present a Clustering Opportunistic Ant-based Routing protocol (COAR), which comprises the following main contributions to achieve high energy efficient and well load-balance: (i) in the clustering algorithm, we caculate the theoretical value of energy dissipation, which will make the number of clusters fluctuate around the expected value, (ii) define novel heuristic function and pheromone update manner, develop an improved ant-based routing algorithm, in this way, the optimal path with lower energy level and shorter link length is established, and (iii) propose the energy-based opportunistic broadcasting mechanism to reduce the routing control overhead. We implement COAR protocol in NS2 simulator and our extensive evaluation shows that COAR is superior to some seminal routing algorithms under a wide range of scenarios

    Application-aware Cognitive Multi-hop Wireless Networking Testbed and Experiments

    Get PDF
    In this thesis, we present a new architecture for application-aware cognitive multihop wireless networks (AC-MWN) with testbed implementations and experiments. Cognitive radio is a technique to adaptively use the spectrum so that the resource can be used more efficiently in a low cost way. Multihop wireless networks can be deployed quickly and flexibly without a fixed infrastructure. In presented new architecture, we study backbone routing schemes with network cognition, routing scheme with network coding and spectrum adaptation. A testbed is implemented to test the schemes for AC-MWN. In addition to basic measurements, we implement a video streaming application based on the AC-MWN architecture using cognitive radios. The Testbed consists of three cognitive radios and three Linux laptops equipped with GNU Radio and GStreamer, open source software development toolkit and multimedia framework respectively. Resulting experiments include a range from basic half duplex data to full duplex voice communications and audio/video streaming with spectrum sensing. This testbed is a foundation for a scalable multipurpose testbed that can be used to test such networks as AC-MWN, adhoc, MANET, VANET, and wireless sensor networks. Experiment results demonstrate that the AC-MWN is applicable and valuable for future low-cost and flexible communication networks. Adviser: Yi Qia

    Efficient Spectrum Management for Mobile Ad Hoc Networks

    Get PDF
    The successful deployment of advanced wireless network applications for defense, homeland security, and public safety depends on the availability of relatively interference-free spectrum. Setup and maintenance of mobile networks for military and civilian first-response units often requires temporary allocation of spectrum resources for operations of finite, but uncertain, duration. As currently practiced, this is a very labor-intensive process with direct parallels to project management. Given the wide range of real-time local variation in propagation conditions, spatial distribution of nodes, and evolving technical and mission priorities current human-in-the loop conflict resolution approaches seem untenable. If the conventional radio regulatory structure is strictly adhered to, demand for spectrum will soon exceed supply. Software defined radio is one technology with potential to exploit local inefficiencies in spectrum usage, but questions regarding the management of such network have persisted for years. This dissertation examines a real-time spectrum distribution approach that is based on principles of economic utility and equilibrium among multiple competitors for limited goods in a free market. The spectrum distribution problem may be viewed as a special case of multi-objective optimization of a constrained resource. A computer simulation was developed to create hundreds of cases of local spectrum crowding, to which simultaneous perturbation simulated annealing (SPSA) was applied as a nominal optimization algorithm. Two control architectures were modeled for comparison, one requiring a local monitoring infrastructure and coordination ("top down") the other more market based ("bottom up"). The analysis described herein indicates that in both cases "hands-off" local spectrum management by trusted algorithms is not only feasible, but that conditions of entry for new networks may be determined a priori, with a degree of confidence described by relatively simple algebraic formulas

    Design of an UAV swarm

    Get PDF
    This master thesis tries to give an overview on the general aspects involved in the design of an UAV swarm. UAV swarms are continuoulsy gaining popularity amongst researchers and UAV manufacturers, since they allow greater success rates in task accomplishing with reduced times. Appart from this, multiple UAVs cooperating between them opens a new field of missions that can only be carried in this way. All the topics explained within this master thesis will explain all the agents involved in the design of an UAV swarm, from the communication protocols between them, navigation and trajectory analysis and task allocation
    corecore