22,964 research outputs found

    Interpretable Convolutional Neural Networks

    Full text link
    This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.Comment: In this version, we release the website of the code. Compared to the previous version, we have corrected all values of location instability in Table 3--6 by dividing the values by sqrt(2), i.e., a=a/sqrt(2). Such revisions do NOT decrease the significance of the superior performance of our method, because we make the same correction to location-instability values of all baseline

    Classification, dimensionality reduction, and maximally discriminatory visualization of a multicentre 1H-MRS database of brain tumors

    Get PDF
    The combination of an Artificial Neural Network classifier, a feature selection process, and a novel linear dimensionality reduction technique that provides a data projection for visualization and which preserves completely the class discrimination achieved by the classifier, is applied in this study to the analysis of an international, multi-centre 1H-MRS database of brain tumors. This combination yields results that are both intuitively interpretable and very accurate. The method as a whole remains simple enough as to allow its easy integration in existing medical decision support systems.Peer ReviewedPostprint (published version

    The Intuitive Appeal of Explainable Machines

    Get PDF
    Algorithmic decision-making has become synonymous with inexplicable decision-making, but what makes algorithms so difficult to explain? This Article examines what sets machine learning apart from other ways of developing rules for decision-making and the problem these properties pose for explanation. We show that machine learning models can be both inscrutable and nonintuitive and that these are related, but distinct, properties. Calls for explanation have treated these problems as one and the same, but disentangling the two reveals that they demand very different responses. Dealing with inscrutability requires providing a sensible description of the rules; addressing nonintuitiveness requires providing a satisfying explanation for why the rules are what they are. Existing laws like the Fair Credit Reporting Act (FCRA), the Equal Credit Opportunity Act (ECOA), and the General Data Protection Regulation (GDPR), as well as techniques within machine learning, are focused almost entirely on the problem of inscrutability. While such techniques could allow a machine learning system to comply with existing law, doing so may not help if the goal is to assess whether the basis for decision-making is normatively defensible. In most cases, intuition serves as the unacknowledged bridge between a descriptive account and a normative evaluation. But because machine learning is often valued for its ability to uncover statistical relationships that defy intuition, relying on intuition is not a satisfying approach. This Article thus argues for other mechanisms for normative evaluation. To know why the rules are what they are, one must seek explanations of the process behind a model’s development, not just explanations of the model itself
    • …
    corecore