31,309 research outputs found

    Metaphor as categorisation: a connectionist implementation

    Get PDF
    A key issue for models of metaphor comprehension is to explain how in some metaphorical comparison , only some features of B are transferred to A. The features of B that are transferred to A depend both on A and on B. This is the central thrust of Black's well known interaction theory of metaphor comprehension (1979). However, this theory is somewhat abstract, and it is not obvious how it may be implemented in terms of mental representations and processes. In this paper we describe a simple computational model of on-line metaphor comprehension which combines Black's interaction theory with the idea that metaphor comprehension is a type of categorisation process (Glucksberg & Keysar, 1990, 1993). The model is based on a distributed connectionist network depicting semantic memory (McClelland & Rumelhart, 1986). The network learns feature-based information about various concepts. A metaphor is comprehended by applying a representation of the first term A to the network storing knowledge of the second term B, in an attempt to categorise it as an exemplar of B. The output of this network is a representation of A transformed by the knowledge of B. We explain how this process embodies an interaction of knowledge between the two terms of the metaphor, how it accords with the contemporary theory of metaphor stating that comprehension for literal and metaphorical comparisons is carried out by identical mechanisms (Gibbs, 1994), and how it accounts for both existing empirical evidence (Glucksberg, McGlone, & Manfredi, 1997) and generates new predictions. In this model, the distinction between literal and metaphorical language is one of degree, not of kind

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Non-functional Property based service selection: A survey and classification of approaches

    Get PDF
    In recent years there has been much effort dedicated to developing approaches for service selection based on non-functional properties. It is clear that much progress has been made, and by considering the individual approaches there is some overlap in functionality, but obviously also some divergence. In this paper we contribute a classification of approaches, that is, we define a number of criteria which allow to differentiate approaches. We use this classification to provide a comparison of existing approaches and in that sense provide a survey of the state of the art of the field. Finally we make some suggestions as to where the research in this area might be heading and which new challenges need to be addressed

    Embedding Feature Selection for Large-scale Hierarchical Classification

    Full text link
    Large-scale Hierarchical Classification (HC) involves datasets consisting of thousands of classes and millions of training instances with high-dimensional features posing several big data challenges. Feature selection that aims to select the subset of discriminant features is an effective strategy to deal with large-scale HC problem. It speeds up the training process, reduces the prediction time and minimizes the memory requirements by compressing the total size of learned model weight vectors. Majority of the studies have also shown feature selection to be competent and successful in improving the classification accuracy by removing irrelevant features. In this work, we investigate various filter-based feature selection methods for dimensionality reduction to solve the large-scale HC problem. Our experimental evaluation on text and image datasets with varying distribution of features, classes and instances shows upto 3x order of speed-up on massive datasets and upto 45% less memory requirements for storing the weight vectors of learned model without any significant loss (improvement for some datasets) in the classification accuracy. Source Code: https://cs.gmu.edu/~mlbio/featureselection.Comment: IEEE International Conference on Big Data (IEEE BigData 2016

    A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D images

    Full text link
    Semantic segmentation is the pixel-wise labelling of an image. Since the problem is defined at the pixel level, determining image class labels only is not acceptable, but localising them at the original image pixel resolution is necessary. Boosted by the extraordinary ability of convolutional neural networks (CNN) in creating semantic, high level and hierarchical image features; excessive numbers of deep learning-based 2D semantic segmentation approaches have been proposed within the last decade. In this survey, we mainly focus on the recent scientific developments in semantic segmentation, specifically on deep learning-based methods using 2D images. We started with an analysis of the public image sets and leaderboards for 2D semantic segmantation, with an overview of the techniques employed in performance evaluation. In examining the evolution of the field, we chronologically categorised the approaches into three main periods, namely pre-and early deep learning era, the fully convolutional era, and the post-FCN era. We technically analysed the solutions put forward in terms of solving the fundamental problems of the field, such as fine-grained localisation and scale invariance. Before drawing our conclusions, we present a table of methods from all mentioned eras, with a brief summary of each approach that explains their contribution to the field. We conclude the survey by discussing the current challenges of the field and to what extent they have been solved.Comment: Updated with new studie

    A feedback model of perceptual learning and categorisation

    Get PDF
    Top-down, feedback, influences are known to have significant effects on visual information processing. Such influences are also likely to affect perceptual learning. This article employs a computational model of the cortical region interactions underlying visual perception to investigate possible influences of top-down information on learning. The results suggest that feedback could bias the way in which perceptual stimuli are categorised and could also facilitate the learning of sub-ordinate level representations suitable for object identification and perceptual expertise

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development
    corecore