34,807 research outputs found

    A Sparse Multi-Scale Algorithm for Dense Optimal Transport

    Full text link
    Discrete optimal transport solvers do not scale well on dense large problems since they do not explicitly exploit the geometric structure of the cost function. In analogy to continuous optimal transport we provide a framework to verify global optimality of a discrete transport plan locally. This allows construction of an algorithm to solve large dense problems by considering a sequence of sparse problems instead. The algorithm lends itself to being combined with a hierarchical multi-scale scheme. Any existing discrete solver can be used as internal black-box.Several cost functions, including the noisy squared Euclidean distance, are explicitly detailed. We observe a significant reduction of run-time and memory requirements.Comment: Published "online first" in Journal of Mathematical Imaging and Vision, see DO

    Heuristic Solutions for Loading in Flexible Manufacturing Systems

    Get PDF
    Production planning in flexible manufacturing system deals with the efficient organization of the production resources in order to meet a given production schedule. It is a complex problem and typically leads to several hierarchical subproblems that need to be solved sequentially or simultaneously. Loading is one of the planning subproblems that has to addressed. It involves assigning the necessary operations and tools among the various machines in some optimal fashion to achieve the production of all selected part types. In this paper, we first formulate the loading problem as a 0-1 mixed integer program and then propose heuristic procedures based on Lagrangian relaxation and tabu search to solve the problem. Computational results are presented for all the algorithms and finally, conclusions drawn based on the results are discussed

    On Compact Routing for the Internet

    Full text link
    While there exist compact routing schemes designed for grids, trees, and Internet-like topologies that offer routing tables of sizes that scale logarithmically with the network size, we demonstrate in this paper that in view of recent results in compact routing research, such logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing. We use analytic arguments to show that the number of routing control messages per topology change cannot scale better than linearly on Internet-like topologies. We also employ simulations to confirm that logarithmic routing table size scaling gets broken by topology-independent addressing, a cornerstone of popular locator-identifier split proposals aiming at improving routing scaling in the presence of network topology dynamics or host mobility. These pessimistic findings lead us to the conclusion that a fundamental re-examination of assumptions behind routing models and abstractions is needed in order to find a routing architecture that would be able to scale ``indefinitely.''Comment: This is a significantly revised, journal version of cs/050802

    User-differentiated hierarchical key management for the bring-your-own-device environments

    Get PDF
    To ensure confidentiality, the sensitive electronic data held within a corporation is always carefully encrypted and stored in a manner so that it is inaccessible to those parties who are not involved. During this process, the specific manners of how to keep, distribute, use, and update keys which are used to encrypt the sensitive data become an important thing to be considered. Through use of hierarchical key management, a technique that provides access controls in multi-user systems where a portion of sensitive resources shall only be made available to authorized users or security ordinances, required information is distributed on a need-to-know basis. As a result of this hierarchical key management, time-bound hierarchical key management further adds time controls to the information access process. There is no existing hierarchical key management scheme or time-bound hierarchical key management scheme which is able to differentiate users with the same authority. When changes are required for any user, all other users who have the same access authorities will be similarly affected, and this deficiency then further deteriorates due to a recent trend which has been called Bring-Your-Own-Device. This thesis proposes the construction of a new time-bound hierarchical key management scheme called the User-Differentiated Two-Layer Encryption-Based Scheme (UDTLEBC), one which is designed to differentiate between users. With this differentiation, whenever any changes are required for one user during the processes of key management, no additional users will be affected during these changes and these changes can be done without interactions with the users. This new scheme is both proven to be secure as a time-bound hierarchical key management scheme and efficient for use in a BYOD environment

    A Constraint-directed Local Search Approach to Nurse Rostering Problems

    Full text link
    In this paper, we investigate the hybridization of constraint programming and local search techniques within a large neighbourhood search scheme for solving highly constrained nurse rostering problems. As identified by the research, a crucial part of the large neighbourhood search is the selection of the fragment (neighbourhood, i.e. the set of variables), to be relaxed and re-optimized iteratively. The success of the large neighbourhood search depends on the adequacy of this identified neighbourhood with regard to the problematic part of the solution assignment and the choice of the neighbourhood size. We investigate three strategies to choose the fragment of different sizes within the large neighbourhood search scheme. The first two strategies are tailored concerning the problem properties. The third strategy is more general, using the information of the cost from the soft constraint violations and their propagation as the indicator to choose the variables added into the fragment. The three strategies are analyzed and compared upon a benchmark nurse rostering problem. Promising results demonstrate the possibility of future work in the hybrid approach

    A Parallel Adaptive P3M code with Hierarchical Particle Reordering

    Full text link
    We discuss the design and implementation of HYDRA_OMP a parallel implementation of the Smoothed Particle Hydrodynamics-Adaptive P3M (SPH-AP3M) code HYDRA. The code is designed primarily for conducting cosmological hydrodynamic simulations and is written in Fortran77+OpenMP. A number of optimizations for RISC processors and SMP-NUMA architectures have been implemented, the most important optimization being hierarchical reordering of particles within chaining cells, which greatly improves data locality thereby removing the cache misses typically associated with linked lists. Parallel scaling is good, with a minimum parallel scaling of 73% achieved on 32 nodes for a variety of modern SMP architectures. We give performance data in terms of the number of particle updates per second, which is a more useful performance metric than raw MFlops. A basic version of the code will be made available to the community in the near future.Comment: 34 pages, 12 figures, accepted for publication in Computer Physics Communication
    • …
    corecore